
MULTI-GRAPH SAMPLING OF ONLINE COMMUNITIES VIA MEAN HITTING TIME

Jacob Chakareski
Signal Processing Laboratory - LTS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

ABSTRACT

We derive a framework for sampling online communities based on
the mean hitting time of its members, considering that there are mul-
tiple graphs associated with the same vertex set V representing the
social network. First, we formulate random walk models on the
multi-graph ensemble and define the essential properties of the mean
hitting times associated with the corresponding Markov chains on
the vertex set V . Then, we design a branch and bound optimization
technique for computing the subset of vertices A that exhibits the
shortest mean hitting time across the multi-graph, given a constraint
on the size of A. We also design a greedy optimization method that
computes an approximation to the optimal subset, at lower complex-
ity, and that lends itself to a decentralized implementation, for further
complexity reduction. We examine the performance of the sampling
framework through a series of simulation experiments involving syn-
thetic and actual samples of online community graphs. We demon-
strate substantial improvements in terms of sampling (network) cost
reduction and information dissemination speed relative to the state-
of-the-art methods of node degree and eigenvector centrality.

1. INTRODUCTION

Frequently, one is faced with the task of selecting a representative
subset of peers from an online community. Typically, these are
the nodes (vertices) of the social graph that are the most influen-
tial within their community, frequently referred to as information
hubs, and that therefore have a strong impact on the flow of infor-
mation within the social network. Applications that can benefit from
having such a subset of social peers are numerous and include rec-
ommendation systems [1], viral marketing [2], information search
and retrieval [3], and medical and social studies [4], to name a few
examples. In the present paper, we derive a formal framework for
sampling online social networks for such nodes in the presence of
multiple layers of graph information associated with the vertex set
representing the online community.

For instance, beyond the actual topology of the social network,
examples of such additional graph information include the data net-
work connectivity graph between the social peers and the communi-
cation graph between them formed based on prospective privacy and
security communication constraints that may exist. In fact, there is a
range of topological layers of information that can be affiliated with
the social network members based on the plethora of contextual in-
formation that is typically collected and generated today within and
around online communities [5]. Taking advantage of a multi-graph
ensemble can enhance the performance of information systems deal-
ing with online communities, relative to the case when only the (sin-
gle) social graph is considered, as our numerical experiments con-
firm. In particular, substantial improvements in terms of information
dissemination speed and data transport efficiency are observed rela-
tive to the conventionally employed methods of selecting influential

This work was supported by the Swiss National Science Foundation un-
der Ambizione grant PZ00P2-126416.

nodes based on various centrality measures associated with the so-
cial graph exclusively.

Our framework formalizes the concept of mean hitting time [6]
over the multiple views of an online community, when selecting the
most influential peers. In particular, due to the interaction of the mul-
tiple graphs of information, selecting the most influential members
of the online community by solely considering social graph notions
of node importance, may be quite under-performing when the appli-
cation of such nodes is considered over the whole graph ensemble.
For instance, it may lead to poor performance of viral marketing,
characterized with slow and inefficient propagation of information.
To overcome these shortcomings, our framework selects the most in-
fluential peers in an online community by jointly considering their
mean hitting time impact across all available associated graphs.

We pose the problem of interest as constrained optimization of
selecting a subset of nodes, whose size does not exceed a certain
value, and whose mean hitting time is either minimal over a given
graph or constrained not to exceed a predefined threshold. We derive
a branch and bound technique for solving the optimization precisely.
Its high complexity, however, precludes its application to real-life
scenarios where the online communities can be exceedingly large
in size. Hence, we also design a greedy and distributed technique
that computes an approximation to the actual solution, at lower com-
plexity. As our experiments show, the performance loss of the lat-
ter method is not dramatic in the case studies we considered, which
makes it a suitable prospective candidate for actual deployment.

There have been a number of measures that have been proposed
in the past to assess the centrality of a node’s location within its com-
munity, e.g., its degree, betweenness, dominant eigenvector value,
and closeness [7]. Among them, the eigenvector centrality has been
the most widely, e.g., in the social sciences and information systems
[8, 9]. By introducing the concepts of mean hitting time and multi-
graph to the problem of node selection, our paper substantially ad-
vances the state-of-the-art, given the observed performance benefits.

2. RANDOM WALK MODEL

We assume that there are n views of the vertex set V characterizing
an online community. Specifically, let Gk = (V,A(k),W (k)) de-
note the kth layer of graph information associated with the vertices
in V , for k = 1, . . . , n, where A(k) denotes the connectivity matrix

of the graph and W (k) = [w
(k)
ij] denotes the corresponding matrix of

edge weights. We index the social graph with k = 1, while the rest
of the graph layers (k > 1) are constructed based on the additional
contextual information that is available about the online community
members.

With each graph Gk we associate a random walk that is con-

structed as follows. Let N (k)
i denotes the set of neighbours of vertex

i in the graph Gk. That is, these are the vertices j ∈ V, j �= i for

which the entries a
(k)
ij = 1 in the corresponding matrix A(k). Next,

let w
(k)
i denote the overall weight of node i in Gk that is computed as

w
(k)
i =

∑
j∈N (k)

i

w
(k)
ij , where w

(k)
ij is the i, j-th entry in the corre-

3065978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

sponding weight matrix W (k). Then, the transition probability p
(k)
ij

of the random walk on Gk can be computed as p
(k)
ij = w

(k)
ij /w

(k)
i ,

for j ∈ N (k)
i . Finally, π

(k)
i denotes the stationary probability of

the random walk on the graph Gk over the vertices i ∈ V that is

computed as π
(k)
i =

w
(k)
i

∑
i∈S w

(k)
i

.

3. MEAN HITTING TIME

Let (Xn)n≥0 denote a Markov chain characterized with transition
probabilities pij , for i, j ∈ S, where S represents an indexing set of
the states of the chain1. Let A ⊂ S be a subset of the states of the
chain. Then, with HA we denote the first instance of time when the
chain (Xn)n≥0 reaches a state in A. Formally, HA can be defined
as HA = inf{n ≥ 0|Xn ∈ A} and we refer to it henceforth as the
hitting time of the chain for the subset A.

From the definition of the hitting time, it is obvious that HA rep-
resents a random variable. Therefore, we define its expected value,
conditioned on the fact that the chain started at state i, to be

τA
i := E(HA|X0 = i) . (1)

To conserve space, we omit the proofs of the following propositions.

Proposition 1. The mean hitting time is the smallest non negative
solution of the linear system [10]

τA
i =

{
0 : if i ∈ A,
1 +

∑
j∈Ni

pijτ
A
j : otherwise, (2)

where Ni denotes the set of neighbour states of i.

Proposition 2. Let τA = (τA
i) represent the vector of mean hitting

times for each vertex i ∈ S. Then, τA satisfies the following matrix
equation

(I − P)τA = 1|S| , (3)

where P = [pij], i, j ∈ S is the matrix of transition probabilities of
the chain (Xn)n≥0, I is the identity matrix of size |S|×|S|, and 1|S|
is a (column) vector of ones of length |S|. Computing τA

i , i /∈ A,
can be achieved via the following matrix inversion

τA
e = (I − Pe)

−11|S|−|A| , (4)

where τA
e corresponds to the reduced vector of mean hitting times,

with the entries τA
i in τA removed for indices i ∈ A. Similarly, Pe is

a square matrix (of size |S\A|×|S\A|)2 that is obtained from P by
eliminating the rows and columns that correspond to these indices.
In this case, I represents the identity matrix of the same size as Pe.

4. HITTING TIME OPTIMIZATION

4.1. Problem Formulation

Let A ∈ S represent a subset of nodes of the multi-graph. Let
τA
i,j = EGj (H

A|X0 = i) = E(HA|X0 = i, Gj) denote the
mean hitting time for the set A on the graph Gj given that the cor-
responding Markov chain on Gj starts at state i ∈ S. Then, let
TA
j = {τA

1,j , . . . , τ
A
|S|,j} denote the ensemble of these hitting times

for the vertex set S on the graph Gj , where j = 1, . . . , n. Finally,
we can compute the expected mean hitting time for the set A on the
graph Gj as the expected value of TA

j over the state set S. That is,

1We omit reference to the graph index k in the exposition here. We refer
to the vertex set V of the multi-graph as the set of states of the chain S.

2Note that ”\” denotes the operator set difference.

we write E(TA
j) =

∑
i∈S τA

i,jπ
(j)
i , where π(j) = [π

(j)
i] represents

the stationary distribution of the Markov chain on the graph Gj over
the states i ∈ S.

We are interested in selecting a subset of nodes A ⊂ S of a given
size |A| such that the average hitting time for the set A over the so-
cial graph G1 is minimized. Simultaneously, A should be chosen
such that the average hitting times for A over the rest of the graph
ensemble, i.e., the graphs G2, . . . , Gn, should not exceed certain
predefined values. Our goal is to balance the hitting time perfor-
mance of our sampling approach across the multi-graph ensemble.

Formally, the problem under investigation can be written as

min
A∈S

E(TA
1) (5)

s.t. |A| ≤ κ1 ,

E(TA
j) ≤ κj , for j = 2, . . . , n ,

where the quantities κj , for j = 1, . . . , n, correspond to the con-
straints on the set size |A| and the mean hitting times for the graphs
G2, . . . , Gn, respectively.

Using the method of Lagrange multipliers, we can reformulate
(5) as an unconstrained optimization

min
A∈S

Lλ1,...,λn(T
A
1 , . . . , TA

n) = E(TA
1) + λ1|A|+

n∑
j=2

λj E(T
A
j) .

(6)

where λj > 0, j = 1, . . . , n, represent the corresponding Lagrange
multipliers. Next, we design an optimization method for solving (6).

4.2. Branch and Bound Solution

Let p = (a1, . . . , a|p|) represent a prefix of a given sequence of

actions a = (a1, . . . , a|S|), for |p| ≤ |S|. Then, E(T
A(a)
j), ∀j,

will be smallest in value when ai = 1, for i = |p| + 1, . . . , |S|.
Therefore, εmin,j(p) = E(T

A((p,1,...,1))
j), for j = 1, . . . , n, repre-

sent lower bounding values for the corresponding terms of the La-
grangian Lλ1,...,λn(T

A
1 , . . . , TA

n) in (6), for the given action pre-
fix p. Similarly, ρmin(p) = |A((p, 0, . . . , 0))| represents a lower
bound for the second term in (6), again given p. That is because
the set A(a) is smallest in size when the rest of the actions in a, be-
yond the prefix p, signify not to include in A(a) the corresponding
vertices i ∈ S, for i = |p| + 1, . . . , |S|. Hence, combining the
bounding terms above provides us with an overall lower bound for
the Lagrangian of any action vector a that includes p as its prefix.
Formally, the bound can be written as

Lλ,min(p) = εmin,1(p) + λ1 ρmin(p) +

n∑
j=2

λj εmin,j(p) . (7)

The algorithm starts with an arbitrary vector of actions a ∈
{0, 1}|S|. Alternatively, a can be initialized with an approximation
of the solution of (6) that can be obtained ahead of time. The policy
prefix p is empty originally. The algorithm then extends the pre-
fix p to length len(p) + 1, in a recursive fashion, until one of the
following two conditions is met. Either the lower bound Lλ,min(p)

exceeds Lλ(a) = Lλ1,...,λn(T
A(a)
1 , . . . , T

A(a)
n) from (6), where a

is the currently best vector of actions, or the length of p reaches |S|.
In the latter case, a is updated with the action prefix of length |S|.

A recursion of the algorithm executes as follows. All possible
extensions pk of length one of the prefix p are determined. Given
that we can append either zero or one to p (extensions of length
one), there are only two possible extensions pk. We then calculate

3066

Lλ,min(pk), for k = 0, 1, where p0 signifies the case when p is ap-
pended with zero and p1 denotes the respective extension with one.
If Lλ,min(pk) > Lλ(a), no policy of prefix pk can outperform the
currently best policy a. Otherwise, if len(pk) = |S|, the algorithm
sets a = pk (a better action vector was found). On the other hand,
if len(pk) < |S|, the recursion above is carried out again on pk. If
the last condition is met by both pk (k = 0 and k = 1), the recur-
sion is carried out on each pk, in increasing order of their respective
Lλ,min(pk) values. When the algorithm completes, a will comprise
the optimal set of actions a∗ = (a∗

1, . . . , a
∗
|S|). A formal description

of the algorithm is provided below.

Algorithm 1 Branch and bound optimization

1: Initialize a,p = ()
2: BranchAndBound(p)

Recursive function: BranchAndBound(p)
1: Extend: pk = (p, k), for k = 0, 1
2: Compute: Lλ,min(pk), for k = 0, 1
3: if Lλ,min(p0) ≤ Lλ,min(p1) then
4: ExaminePrefix(p0); ExaminePrefix(p1)
5: else
6: ExaminePrefix(p1); ExaminePrefix(p0)
7: end if

Subroutine: ExaminePrefix(p)
1: if Lλ,min(p) < Lλ(a) then
2: if len(p) = |S| then
3: a = p1

4: else
5: BranchAndBound(p)
6: end if
7: end if

4.3. Complexity considerations

The worst case complexity of the branch and bound technique is
O(2n), since the number of recursive calls is bounded by O(2n) and
the update of the bounds εmin,j and ρmin at each recursive call can be
carried out in constant time. In practice, however, the pruning of the
search space allows for a substantial speed-up of the algorithm. Still,
its computational complexity is of a sufficiently high magnitude to
preclude its application in practice.

5. GREEDY APPROXIMATION

Here, we approximatively solve (6), in a greedy iterative manner. In
particular, at each iteration we choose the best single vertex to be
added to the already selected subset A, until the limit on the set size
|A| is reached. There are two phases of the algorithm. In the first
one, we are concerned with adding nodes to A that will simultane-
ously contribute to large reductions in hitting time across all graphs
of the ensemble. In the second phase, once the mean hitting time
on every graph Gj , for j �= 1, has been sufficiently reduced, the
algorithm focuses on minimizing the mean hitting time on the social
graph, i.e. G1, exclusively. The second phase of the algorithm takes
advantage of the fact that the mean hitting times are monotonically
decreasing, on all graphs, as a function of the set size |A|. Therefore,
even the mean hitting times E(Tj), j > 1, will nonetheless continue
to be reduced during the second phase as well.

We start with A = ∅. For each vertex i /∈ A, the algorithm
computes the reduction in mean hitting time that will be achieved on
each graph j = 1, . . . , n, if the vertex i is added to A. That is,

ΔE(Tj)i = E(T
{A∪i}
j)− E(TA

j) , (8)

where we set E(T ∅
j) = 0, ∀j, on the beginning.

Next, the maximum improvement (reduction) in mean hitting
time on each graph is identified with

mΔE(Tj) = min
i/∈A

ΔE(Tj)i . (9)

Finally, the algorithm computes a compound mean hitting time
term for each vertex candidate i ∈ S \A using

ΔE(T)i =

{ ∏n
j=1

ΔE(Tj)i

mΔE(Tj)
: if |A| ≤ βκ1 and E(Tj) > κj , j > 1 ,

ΔE(T1)i : otherwise .
(10)

Note that the first and second cases in (10) above signify respec-
tively the first and second phases of the algorithm. The conditions
of the first case in (10) control the greediness of the algorithm with
respect to meeting the constraints on the hitting times on the graphs
Gj , for j = 2, . . . , n. With the parameter β ∈ (0, 1) we can adapt
the duration of the two phases of the algorithm in order to enhance
its performance. At the same time, by the virtue of considering a
product mean hitting time term for its first phase, the algorithm still
selects those vertices to be included in A that will simultaneously
contribute to large mean hitting time reductions across all graphs.
Therefore, this will additionally insure that the algorithm will not
dramatically underperform relative to E(T1) during this stage. Once
the first phase is over, the algorithm exclusively focuses on reducing
further the mean hitting time over G1, as evident from (10).

An operation cycle of the algorithm is completed by selecting
the best candidate vertex via the following optimization

k =

{
argmini∈S\A ΔE(T)i : if A = ∅ ,
argmaxi∈S\A ΔE(T)i : otherwise .

(11)

Note that we need to differentiate the two cases A = ∅ and A �=
∅, hence the specific form of Equation (11) above. The algorithm
then updates A as A = {A ∪ k}. The procedure described above is
repeated until |A| = κ1.

The greedy optimization can be solved in a decentralized man-
ner, which makes it additionally appealing for applications where ac-
cess to the full graphs Gj , j = 1, . . . , n, comprising the multi-graph
ensemble is not feasible. In particular, the computational steps of the
optimization require the knowledge of the mean hitting time vector
τA
e associated with the vertex set V , in the case of each graph. The

computation of τA
e in turn is carried out in a centralized fashion by

the matrix inversion in (4), which requires a complete knowledge of
each graph Gj . This critical, but computationally intensive, step of
the optimization can instead be relegated to the graph’s nodes that
will compute τA

e in a decentralized manner, thereby reducing the
overall complexity of the greedy optimization further. Due to space
limitations, detailed description cannot be included here.

6. EXPERIMENTAL RESULTS

6.1. Mean hitting time

We compare the performance of the proposed optimization and
its greedy approximation, denoted henceforth as Opt and Greedy,
against that of two conventional techniques for node selection in
social networks. These are the well-known centrality measures that
select nodes either according to their vertex degree in the social
graph [11] or the value that they exhibit as part of the dominant
eigenvector of the graph [12]. Henceforth, we will respectively refer
to these two approaches as NodeDegCentr and EigVecCentr. The
mean hitting times on the graphs G1 and G2 associated with the
four techniques under comparison are shown in Figure 1.

3067

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
Mean hitting time: G

1
 (social graph)

|A|/|V| (%)

E
(T

A 1
)

Opt
Greedy
EigVecCentr
NodeDegCentr

(a)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

|A|/|V| (%)

E
(T

A 2
)

Mean hitting time: G
2
 (network graph)

Opt
Greedy
EigVecCentr
NodeDegCentr

(b)

Fig. 1. Mean hitting time performance on graphs (a) G1 and (b) G2.

In particular, it can be seen from Figure 1a that the centrality
techniques slightly outperform the proposed optimization methods
on the social graph G1. This is expected, since Opt and Greedy
sacrifice some of the E(TA

1) performance in order to keep E(TA
1)

on G2 in check. Still, the relative differences in mean hitting time
between NodeDegCentr and EigVecCentr on one hand and Opt and
Greedy, on the other, are rather insignificant for small |A| and tend
to diminish even further as the size of A is increased. On the other
hand, since NodeDegCentr and EigVecCentr exclusively focus on
the social graph in their operation, we can see from Figure 1b that
they exhibit quite long mean hitting times on G2, relative to our
optimization techniques. This can be a substantial shortcoming, as it
can lead to extensive sampling (data network) cost and consequently
poor performance of the underlying application employing them.

6.2. Data network cost

Here, we consider that the graph G2 represents the data network
connections between the vertices in V and its edge weights corre-
spond to the cost of data communication (transport) on these con-
nection links. That is, G2 provides an abstraction of the underlying
data network serving the online community. The shorter mean hit-
ting time on G2 that our optimization enables would map to lower
network cost when data communication is carried out between the
nodes comprising A and the rest of the vertices in V . Figure 2a
shows the cost reduction in percent that Greedy3 provides relative
to EigVecCentr as a function of the edge density of G2. It can be
seen that we observe cost savings on the order of more than 100%
for lower edge densities of G2 that are then gradually reduced as the
average number of edges per vertex is increased. This outcome is
expected and is due to the fact that the choice of A becomes less
critical as the number of edges in a graph is increased. Still, even for
very high edge densities our optimization provides non-trivial cost
savings, on the order of 30-40%, as evident from Figure 2a.

3 4 5 6 7 8 9 10 11 12
0

50

100

150

Edge density (|E
2
|/|V|)

R
ed

uc
tio

n
(%

)

Cost savings on G
2
 (network graph)

(a)

10
2

10
3

10
4

25

30

35

40

45

50

55

60

65

70

75

Network size (|V|)

R
ed

uc
tio

n
(%

)

Cost savings on G
2
 (network graph)

(b)

Fig. 2. Cost savings (G2) versus (a) Edge density; (b) Network size.
3Here, we only consider Greedy as a representative of our optimization

framework, due to the sizes of the graphs employed in the experiments.

Next, we examine in Figure 2b the cost reduction relative to the
centrality techniques, as a function of the vertex set size |V |, for a
fixed average edge density of G2. It can be seen that Greedy provides
a consistent and practically constant gain of 50% relative to EigVec-
Centr over the whole range of values considered for the size of the
online community. The observed improvement in performance is
encouraging as it can lead to efficient algorithms for information
diffusion that will take advantage of our methodology in a number
of important applications spanning recommendations systems, in-
formation retrieval, and viral marketing, to name a few examples. It
should be noted that the design of prospective multi-graph versions
of the reference techniques is beyond the scope of the present paper.

The experiments described thus far have been carried out on syn-
thetic graphs generated according to statistics of social and data net-
work graphs reported in the literature [13]. We also ran the same
set of experiments on an actual Facebook data set and observed very
similar results that due to space constraints cannot be included here.

7. CONCLUSION

We show that additional layers of graph information associated with
an online community should be taken into account when selecting its
most influential members. Our approach formalizes for the first time
the process of node selection as a minimization of multiple hitting
times defined on a multi-graph ensemble. By the virtue of enabling
much shorter times to reach the selected influential nodes from any
vertex in the social graph, the performance gains that our framework
delivers can be interpreted as both data network communication cost
savings and increased rate of information dissemination. The latter
factor in turn can be additionally interpreted as increased customer
satisfaction and profit return, for the operator of the community site.

8. REFERENCES

[1] A. Bagherjeiran and R. Parekh, “Combining behavioral and social net-
work data for online advertising,” in Proc. Int’l Conf. Data Mining
Workshops. Washington, D.C., USA: IEEE, Dec. 2008, pp. 837–846.

[2] R. Bhatt, V. Chaoji, and R. Parekh, “Predicting product adoption in

large-scale social networks,” in Proc. 19th Int’l Conf. Information and
Knowledge Management. Toronto, ON, Canada: ACM, Oct. 2010.

[3] C.-Y. Lin, K. Ehrlich, V. Griffiths-Fisher, and C. Desforges, “Small-
blue: People mining for expertise search,” IEEE Multimedia, vol. 15,
no. 1, pp. 78–84, Jan.-Mar. 2008.

[4] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual Review of Sociology, vol. 27,
pp. 415–444, Aug. 2001.

[5] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peter-
son, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, “The rise
of people-centric sensing,” IEEE Internet Computing, July-Aug. 2008.

[6] G. Casella and R. L. Berger, Statistical Inference, Jun. 2001.

[7] S. Borgatti, “Centrality and network flow,” Social Networks, vol. 27,
no. 1, pp. 55–71, 2005.

[8] E. Atsan and O. Özkasap, “Applicability of eigenvector centrality prin-
ciple to data replication in MANETs,” in Proc. Symp. Computer and
Information Sciences. Ankara, Turkey: IEEE, Nov. 2007.

[9] X. Shi, M. Bonner, L. A. Adamic, and A. C. Gilbert, “The very small

world of the well-connected,” in Proc. 19th Conf. Hypertext and Hyper-
media. Pittsburgh, PA, USA: ACM, Jun. 2008, pp. 61–70.

[10] A. Ravindran, D. T. Phillips, and J. J. Solberg, Operations Research:
Principles and Practice. John Wiley & Sons, Jan. 1987.

[11] L. C. Freeman, “Centrality in social networks: Conceptual clarifica-
tion,” Social Networks, vol. 1, no. 3, pp. 215–239, 1979.

[12] P. Bonachich, “Power and centrality: A family of measures,” Social
Networks, vol. 92, no. 5, pp. 1170–1182, 1987.

[13] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 15 Oct. 1999.

3068

