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ABSTRACT
A duplication-deletion random graph is presented in this paper

to model social networks which change over time. The paper ana-
lyzes the dynamics of this duplication-deletion random graph where
at each time instant, one node can either join or leave the network.
A degree distribution analysis is provided for this graph and an ex-
pression is derived to compute the power law component. Also a
Markov-modulated random graph is analyzed where the the growth
of the network evolves according to a slow Markov chain. An upper
bound is derived for the mean square error between the estimated
degree distribution and the asymptotic one. Using the fact that the
duplication-deletion graph satisfies a power law, an upper bound is
presented for the most significant singular value of the adjacency
matrix of the graph.

Index Terms— Complex networks, Markov modulated random
graphs, power law, stochastic approximation.

1. INTRODUCTION

Social networks pervade the social and the economic lives of many
people nowadays. They have a significant role in transmission of in-
formation through a network or even in spread of a disease or propa-
gation of gossip in a community. Social networks are also important
in several aspects of our daily life such as advertising goods and
products, how we vote, which item we buy, etc. Because of the wide
variety of application of social networks, finding a model which suits
the social network the best and analyzing this model has attracted
many attention recently.

Dynamic random graphs have been used widely to model social
networks. In dynamic random graphs, the network evolves over time
and a node can join the network at any time. Such dynamic models
can be viewed as an infinite sequence of graphs where the random
graph at each time may depend on all the earlier graphs (snapshots
of the evolving graph at earlier times)[1]. In social networks, each
node represents a member of this network and each edge depicts a
relation between the incident nodes.

The evolution of the random graphs is investigated in several pa-
pers, such as [2, 3]. The model of Pastor-Satorras et al.[4] makes the
basis for the model which is studied and generalized in this paper.
In the Pastor-Satorras model, at each time step, a new node joins the
network. In the literature, it has been shown that the degree distribu-
tion of such network satisfies a power law[5, 6]. In random graphs
which satisfy the power law, the number of nodes with an specific
degree depends on a parameter called power law component. In
this paper, we generalize the model in [4, 1] to a scenario that each
node can join or leave the network at any time (duplication-deletion
model). The graph resulted from the duplication-deletion process is
used to model social networks where the interaction between nodes
evolves over time, e.g., the high school friendship (social) network

whose growth is varying over time. To model such social networks,
we assume that the evolution of the graph is changing according
to a finite state Markov chain. This means that the probability of
having new edges between nodes in the graph changes over the time.
The proposed dynamical graph is very general and can cover more
realistic social networks. A class of stochastic approximation (SA)
algorithms is employed to track the cumulative distribution function
(CDF) of degree of each node in the duplication-deletion random
graph [7]. The evolution of duplication-deletion random graph in
this case, depends on a slow Markov chain, therefore, the asymp-
totic behavior of such graphs is analyzed using a regime switching
stochastic approximation algorithm. knowing the total number of
nodes with specific degree (degree sequence) of the graph which
models the social network, is important in analyzing the behavior
of this network, for example it determines the existence of “giant
component” from which, information transmission in a social net-
works can be investigated. The existence of giant component is also
used in studying the spread of a disease through a human-related
network, see [8, 9, 10].

Main Results: In this paper, a general duplication-deletion
random graph is presented to model the social networks. This
duplication-deletion process can be used to model online social
networks in which nodes can join or leave the network at any time.
We show that the graph resulted from duplication-deletion process,
satisfies a power law. An equation for finding the power law com-
ponents, β , for this model is presented in Sec.2.2. Singular values
of the adjacency matrix of the resulting graph which have several
applications in networks such as rank reduction and data mining, is
also studied in this paper. This model is extended to a scenario that
the evolution of the graph is a function of a Markov chain. Using
the stochastic approximation algorithms, an equation is derived for
the empirical measure of cumulative distribution function of de-
gree of each node. Finally, it has been shown in this paper that the
mean square error between estimated CDF and the expected one is
bounded and is in the order of step size.

The remainder of the paper is organized as follows. In Sec.2.2,
we provide a degree distribution analysis of the duplication-deletion
random graph. An equation for the power law component and a dis-
cussion on the most significant singular value are also presented in
this section. The Markov modulated random graph and the stochas-
tic approximation algorithm to estimate the CDF are described in
Sec.3. Numerical examples are given in Sec.4. Finally, Sec.5 con-
cludes the paper and provides possible directions for future work.

2. DUPLICATION-DELETION RANDOM GRAPH

In this section, the duplication-deletion model is described in de-
tails and then a theorem is provided to prove that the resulting graph
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from the duplication-deletion process satisfies a power law. An equa-
tion is also presented to compute the power law component for such
duplication-deletion random graph. Proofs of theorems are omitted
from this manuscript due to the lack of space. However, the sketches
of the proofs are provided to give some intuition of different steps of
the proofs.

2.1. Model description

Let t = 0,1,2, . . . denote discrete time. At each time, an arbitrary
node joins the network by connecting to an specific node (parent
node). After this step, all neighbors of the parent node (that is, all
nodes connected to the parent node) connect to the new node with
probability p. In this paper we assume that they are the only nodes
who have chance to connect to the new node with a given probabil-
ity. The model consists of two steps: Duplication step and Deletion
step. In the duplication-deletion model there are three parameters:
(i)p, probability of connection, (ii) q, probability of deletion, and
(iii) G0 an initial graph at time 0.

Given a graph Gt at time t, the dynamics evolve as follow:

Duplication step (occurs with probability 1):

• A node u from graph Gk is selected with uniform distribution.

• Vertex-duplication: New node v is generated. (A new vertex
is added to the graph.)

• Edge-duplication:

– Node v is connected to node u. (A new edge between u
and v is added to the graph.)

– With probability p ∈ [0,1], node v is connected to each
neighbor of node u.

Deletion Step (occurs with probability q):

• Edge-deletion: All the incident edges of a randomly chosen
node (with uniform distribution), are deleted from the graph
Gk.

• Vertex-deletion: The node which is chosen in the edge-
deletion step is removed from the graph Gk as well.

The resulting graph is denoted by Gt+1. Therefore, the random
graph evolves according to the duplication-deletion model as

Gt+1 = G (Gt , p,q), (1)

where p and q are as defined above and the initial graph at time t = 0
is G0.
The above dynamic random graph is used to model the social net-
works in where each node can join or leave at any time according to
some probabilistic model.

2.2. Finding Power Law Component

Here, it is shown that the duplication-deletion random graph defined
in Sec.2.1 satisfies a power law and an equation is presented for the
power law component. We assume that the duplication step occurs
first (before the deletion step) and the node generated in the dupli-
cation step cannot be eliminated in the deletion step immediately
after its generation. This assumption makes the degree distribution
analysis simpler and avoids the unrealistic situations. In spite of the
deletion step, the duplication step occurs at each time with probabil-
ity one in the duplication-deletion model. In each duplication step,
the graph evolves with at least one more edge. If the probability of
deletion, q, is small enough then the graph does not end up with a
singleton. In the matrix form, the duplication step is adding a pair of
row and column to the adjacency matrix of graph G. In the deletion

step, with probability q, a random node j is uniformly chosen and
the corresponding row and column are removed from the adjacency
matrix of the graph.

Definition 2.1 Let nk denote the number of nodes of degree k in a
random graph Gt in (1). Then Gt satisfies a power law distribution
if nk is proportional to k−β for a fixed β > 1 : lognk = α −β logk,
where α is a constant. β is called power law component.

Let Nt denote the total number of nodes at time t. For simplicity
we can assume that G0 at time t0 = 0 is an empty set so the graph at
time t = 1 is a singleton. It is clear that if the probability of deletion,
q, is zero then at time t, Nt = t; because at each step one node is
added to the graph and no vertex is deleted. Let f (t, i) denote the
number of vertices with degree i at time t. Theorem2.1 gives an
expression for the expected value of f (t, i) and finds the power law
component for the duplication-deletion random graph in terms of p
and q.

Theorem 2.1 With probability approaching 1, the duplication-
deletion random network Gt , t = 1,2 . . . defined in (1) satisfy a
power law as t → ∞. The power law component, β , can be com-
puted from following equation.

1+ p−β p− pβ−1 = q−βq, (2)

where p and q are the probabilities defined in duplication and dele-
tion steps.

Sketch of Proof: Considering all the events that result in a node
with degree i + 1, at time t + 1, a recurrence formula is derived
for conditional expectation of f (t + 1, i+ 1). Solving this recursive
equation completes the proof.

In the duplication-deletion random graph considered above, if
the maximum degree of a node is bounded, then the maximum de-

gree of a random graph with power law component, β , is at most e
α
β

where α is defined in Definition2.1, see [1].

The singular values of the adjacency matrix of a random graph
and specifically the most largest ones have many applications in
dealing with large graphs e.g. rank reduction, graph matching and
link prediction in random graphs. Also singular value decomposi-
tion (SVD) method is widely used in information retrieval and data
mining[11]. In this section, we are focusing on the singular values of
the adjacency matric of the duplication-deletion model. Because the
adjacency matrix of non-directional graph is symmetric, the singu-
lar values of the adjacency matrix s equal to the eigenvalues of that
matrix[12, 13].

It has been shown in the literature that the eigenvalues of the
adjacency matrix of a power law graph satisfy the characteristics de-
scribed in Theorem2.2.1 This theorem provides an upper bound for
the largest eigenvalue of such matrices and also stated that the most
significant eigenvalues of a power law random graph also has power
law distribution under additional conditions on power law compo-
nent and the maximum degree[14].

Theorem 2.2 ([14]) In a random graph that satisfies power law
with exponent β , if β > 2.5 then the largest eigenvalue of the ad-
jacency matrix is bounded by (1 + O(1))

√
m and the k largest

eigenvalues also have power law distribution with exponent 2β −1,

for k < n
(

d
m logn

)β−1
, where n is the number of vertices and m and

d are the maximum and the average degree, respectively.

1The complete proof can be found in [14]

3058



3. MARKOV MODULATED RANDOM GRAPH

This section generalizes the model and analysis of Sec.2.2. It con-
siders the case where the probability of connection p evolves ac-
cording to a finite state Markov chain, θt . As shown in Sec.2.2, the
power law component depends on p. Therefore, as p evolves over
time, the power law component varies with time. So in the Markov
modulated duplication-deletion random graph, the power law com-
ponent depends on θt , β (θt). Using a stochastic approximation al-
gorithm for the cumulative distribution function, the aim is to esti-
mate the cumulative distribution function of each node’s degree. As
defined in Sec.2.2, f (t, i) is the number of nodes with degree i so

∑∞
k=1 f (t, i) = Nt . Therefore,

f (t,i)
Nt

can be interpreted as a probabil-
ity mass function of random process, xt , which denotes the degree of
an specific node at time t.

Let {θt} be a discrete-time slow Markov chain with finite state
space

M = {θ̄1, ..., θ̄m0
}, (3)

and transition probability matrix

Aε = I + εQ. (4)

Here ε is a small parameter and I is an m0 ×m0 identity matrix, and
Q is an irreducible generator of a continues-time Markov chain. Let
qi j denote the elements of the generator matrix Q such that

• (A) qi j ≥ 0 if i �= j and ∀i, ∑m0

j=1 qi j = 0.

The assumption of irreducibility implies that there exists a unique
stationary distribution for this Markov chain, π ∈ R

m0×1 such that

π ′ = π ′Aε . (5)

The total number of nodes with degree i at time t in the Markov
modulated random graph depends on the state of the Markov chain
θt . Let f̄(t, i,θt) denote the total number of nodes with degree i at

time t. The new parameter gt(n,θt) is defined as

gt(n,θt) =
1

Nt

n

∑
k=1

f̄ (t,k,θt), (6)

where can be interpreted as the cumulative distribution function of
degree of nodes at time t in the Markov modulated random graph.
In a Markov-modulated duplication-deletion random graph, the
expected CDF is varying over time as the state of Markov chain
changes. When t is sufficiently large, the expected value of gt(n,θt)
can be written as

E{gt(n,θt)}= E

{
m0

∑
i=1

I(θt = θ̄i).gt(n, θ̄i)

}

=
m0

∑
i=1

I(θt = θ̄i).Eθ{gt(n, θ̄i)}

=
m0

∑
i=1

I(θt = θ̄i).
n

∑
k=1

Ck−β (θ̄i)

=C
m0

∑
i=1

n

∑
k=1

π(i)k−β (θ̄i), (7)

where π is defined in (5). Here, it is shown that if the Markov chain
is slow enough, the stochastic approximation algorithm with con-
stant step size is still able to estimate the cumulative distribution
function and the estimated cumulated distribution function follows
the expected one precisely.
As t → ∞ in (1), the support of the degree distribution becomes un-
bounded in general. But in a power law random graph (recall from

Sec.2.2), the maximum degree does not depend on time. Let M de-
note the maximum degree of the power law random graph. We as-
sume that gt is a 1×M vector. The i-th element of g(t) can be found
from (6).

Let Xt ∈R
M denote the observed degree sequence of the resulted

graph from the duplication-deletion process at time t. These local
observations are used to estimate the empirical cumulative distri-
bution function. The empirical measure of cumulative distribution
function is defined as follows,

ĝt(n) =
1

t

t−1

∑
k=0

I{Xk(n)≤n}. (8)

ĝ(t,n) can be written recursively as follows,

ĝt+1(n) = ĝt(n)− 1

t +1
ĝt(n)+

1

t +1

(
I{Xt+1(n)≤n} − ĝt(n)

)
. (9)

If t is sufficiently large, the following stochastic approximation al-
gorithm with constant step size, μ (where μ denotes a small positive
constant), is used to estimate the empirical cumulative distribution
function,

ĝt+1(n) = ĝt(n)+μ
(

I{Xt+1(n)≤n} − ĝt(n)
)
. (10)

Here, we study the asymptotic behavior of the expected degree dis-
tribution. We show that the difference between the expected CDF
and the estimated one is bounded and this bound depends on μ
and ε . This means that the empirical CDF follows the expected
CDF properly and the error between these two is bounded. Let
g̃t(n) = ĝt(n)−E{gt(n,θt)}. Theorem3.1 shows that the difference
between sample path and the expected cumulative distribution func-
tion is bounded. It also finds the order of this difference in terms of
μ and ε .

Theorem 3.1 2 Suppose that ε2 = o(μ)3, then for sufficiently large
t,

E|g̃t |2 = O
(

μ + ε +
ε2

μ

)
· (11)

Sketch of Proof: We first define a Lyapunov function V (g̃(t)) =
1
2 g̃(t)g̃′(t). Then, a recursive expression is written for the growth
of the difference between sample path and the expected CDF,
V (g̃t+1)−V (g̃t). Back-ward iterating and interpolation conclude
the proof of the theorem.

The above theorem implies that the mean square error between
the expected cumulative distribution function and the empirical one
is bounded. Therefore for small μ , the empirical distribution is an
accurate estimate of the expected CDF. The expected CDF can be
used, for example, in finding the probability of having a giant com-
ponent is social networks (which has many implications in social
networks as described in Sec.1).

4. NUMERICAL EXAMPLES

In this section, numerical examples are given to illustrate the results
from Sec.3. We start with implementing duplication and deletion
steps in the scenario that the probability of connection is not chang-
ing over time. The resulting duplication-deletion random graph is
investigated in terms of degree distribution to show that it satisfies

2Proofs for theorems are omitted due to the lack of space.
3Note that in many cases it is assumed that ε = O(μ) and therefore, ε2 =

o(μ) is a consequence.
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power law. Theorem2.1implies that the degree sequence of the re-
sulted graph satisfies power law with exponent computed using (2).
Let β ∗ denote the solution of (2). β ∗ = 1 always satisfies (2). Power
law component, β = max{1,β ∗}.

Fig.1 Shows the non-trivial solution of (2) versus p for different
values of probability of deletion, q. As can be seen in this figure,
if the probability of deletion is relatively high then the power law
component is very large and this means that a majority of the nodes
in this graph has smaller degree and few nodes has larger degree.
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Fig. 1. The non-trivial solution of the equation 2 for different values
of p and q

Fig.2 shows the number of nodes with specific degree on a log-
arithmic scale for the both horizontal and vertical axes for the graph
resulted from duplication-deletion process with probabilities of con-
nection and deletion as follows, p = 0.48 and q = 0.1. It can be
inferred from the linearity in Fig.2 (excluding the nodes with very
small degree), that the resulted graph from duplication-deletion pro-
cess satisfies a power law. Also, the slope of the linear part in Fig.2
suggests a value for the power law component which is close to that
obtained from Fig.1 (β ∗ = 3.04). As can be seen in the Fig.2, the
power law is a better approximation for the middle points compared
to both ends.
The numerical example for the Markov-modulated random graph
which corroborate the result of Theorem3.1 is omitted due to the
lack of space.
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Fig. 2. The degree distribution of the duplication-deletion random
graph in log-log scale.

5. CONCLUSION AND FUTURE WORKS

This paper analyzed the dynamics of a duplication-deletion graph
where at each time instant, one node can either join or leave the
graph (an extension to the duplication model of [15, 4]). The power
law component for such graph was computed using the result of
Theorem2.1. Also the Markov modulated random graph was pro-
posed to model the social networks whose evolution changes over
time. Using the stochastic approximation algorithms, the cumulative
distributions function of degree of each node is estimated. Finally,
an upper bound was derived for the distance between the empirical
and the expected CDF. Characterizing the error between the expected
CDF and the estimated one can be an extension of this work. Inves-
tigating the spread of a message through a social network using the
expected degree distribution presented in this paper, can also be a
topic for future work.
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