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ABSTRACT

We consider a worst-case robust precoding design for multi-
input multi-output (MIMO) communication systems with im-
perfect channel state information at the transmitter (CSIT).
Instead of a particular choice, we consider a general imper-
fect CSIT model that only assumes the channel errors to be
within a convex set, which includes most common imperfect
CSIT models as special cases. The robust precoding design
is formulated as a maximin problem, aiming at maximizing
the worst-case received signal-to-noise ratio or minimizing
the worst-case error probability. It is shown that the robust
precoder can be easily obtained by solving a convex problem.
We further provide an equivalent but more practical form of
the convex problem that can be efficiently handled with com-
mon optimization methods and software packages.

Index Terms— Convex uncertainty sets, imperfect CSIT,
maximin, MIMO, worst-case robustness.

1. INTRODUCTION

It is well known that the performance of multi-input multi-
output (MIMO) communication systems depends, to a sub-
stantial extent, on the quality of the channel state information
(CSI). The full benefit of a MIMO channel is achieved by
exploiting CSI at the transmitter (CSIT) and adopting proper
precoding techniques. With perfect CSIT, the optimal MIMO
precoding has been well studied under various criteria [1]. In
practice, however, CSIT is seldom perfect due to many prac-
tical issues, such as inaccurate channel estimation, quantiza-
tion of CSI, erroneous or outdated feedback, and time delays
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or frequency offsets between the reciprocal channels. There-
fore, the imperfection of CSIT has to be considered in MIMO
precoding designs so that the system, on one hand, can fully
utilize CSIT, and on the other hand, is robust to the imperfec-
tion of CSIT.

Following a common deterministic imperfect CSI model
[2–9], we assume that the actual channel lies in the neighbor-
hood, often called the uncertainty set or region, of a nominal
channel known by the transmitter. The size of this set repre-
sents the amount of uncertainty on the channel, i.e., the bigger
the set is the more uncertainty there is. This model is suitable
to characterize instantaneous CSI with errors. In this case, a
precoding design is said to be robust if it can achieve the best
performance in the worst channel within the uncertainty set,
which is referred as worst-case robustness. Such robust pre-
coding designs can be obtained by optimizing the worst-case
performance [2–9], leading to a maximin or minimax prob-
lem.

The philosophy of worst-case robustness has been widely
used in MIMO precoding designs. Specifically, the worst-
case robust minimum mean square error (MSE) precoder was
studied in [2] and later generalized by [9] to include transmit
power constraints. In [3] and [4], the authors tried to maxi-
mize the worst-case received signal-to-noise ratio (SNR) but
only focused on a simplified power allocation problem by im-
posing some transmit directions. Interestingly, it was recently
found in [7] and [8] that the transmit directions imposed in [3]
and [4] are optimal in some situations, which leads to fully an-
alytical robust precoders as well as some interesting insights.
The worst-case robust precoders for MIMO multiaccess and
broadcasting channels were studied in [5, 6].

In this paper, we consider a robust MIMO precoding de-
sign to maximize the worst-case received SNR or to minimize
the worst-case pairwise error probability (PEP) if a space-
time block code (STBC) [10] is used. The robust precoding
design is formulated as a maximin problem. In contrast with
the existing works, e.g., [3, 4, 7, 8], that depended on some
particular uncertainty set (e.g., defined by a matrix norm), we
consider a general convex uncertainty set, which covers al-
most all common uncertainty sets as special cases, thus pro-
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viding a general framework.
We show that the robust MIMO precoder for a general

convex uncertainty set is given by the optimal Lagrange mul-
tiplier of a simple convex problem, which, at least in theory,
can be efficiently solved. Considering practical issues, we
further reformulate this convex problem into an equivalent but
more tractable form that is solvable by most common numeri-
cal methods as well as software packages. A dual perspective
link between the reformulated problem and the original con-
vex problem is then provided.

2. PROBLEM STATEMENT

Consider a narrowband point-to-point MIMO communication
system equipped with N transmit and M receive antennas.
Mathematically, the baseband, symbol-sampled system can
be represented by a linear model

y = Hx+ n (1)

where x ∈ CN and y ∈ CM are the transmitted and re-
ceived signals, respectively, H ∈ CM×N is the channel ma-
trix, and n ∈ CM is a circularly symmetric complex Gaussian
noise vector with zero mean and covariance matrix σ2

nI, i.e.,
n ∼ CN (0, σ2

nI). The transmit strategy or precoding is de-
termined by the transmit covariance matrix Q = E{xxH}.
Indeed, via decomposing Q = FFH , the transmitted symbol
vector s, with E{ssH} = I, can be linearly precoded by F,
resulting in x = Fs. In practice, the transmitter should satisfy
the power constraint Q ∈ Q where

Q � {Q : Q � 0, Tr(Q) ≤ P} (2)

and P is the budget on the total transmit power.
Due to many practical issues, CSIT is seldom perfectly

known, which thus calls for robust precoding that can uti-
lize CSIT and meanwhile combat against its imperfection. As
a common imperfect CSI model [2–9], people often assume
that the actual channel can be expressed as H = Ĥ − Δ,
where Ĥ is a nominal channel (e.g., an estimate or feedback
of H) known by the transmitter, and Δ is the error between
Ĥ and H and belongs to an uncertainty set E , i.e., Δ ∈ E .
Then, according to the philosophy of worst-case robustness, a
precoder is said to be robust if it can achieve the best perfor-
mance for the worst channel error in E [2–9].

In this paper we assume perfect CSI at the receiver (CSIR)
and adopt the following performance measure:

Ψ(Q,H) � Tr(HQHH). (3)

It has been verified in [7] that maximizing Ψ(Q,H) corre-
sponds to:1) maximizing the received SNR; 2) minimizing the
PEP of an STBC; 3) maximizing a low-SNR approximation
of the mutual information; 4) minimizing a low-SNR approx-
imation of the MSE. Therefore, by definition, the worst-case

robust MIMO precoder is given by the solution to the follow-
ing maximin problem:

max
Q∈Q

min
Δ∈E

Tr
(
(Ĥ−Δ)Q(Ĥ−Δ)H

)
� Ψ(Q,Δ). (4)

In the literature, there are many particular choices of the
uncertainty set E . For example, the most frequently used un-
certainty set is defined by some matrix norm as

En � {Δ : ‖Δ‖ ≤ ε} (5)

where ε is the error radius, and the matrix norm ‖·‖ could be
the (weighted) Frobenius norm [2, 4–7, 9] or the (weighted)
spectral norm [8]. As another example, if Ĥ results from uni-
formly quantizing the elements of H with a stepsize ρ, the
uncertainty set can be defined as [3]

Eq �

{
Δ : |Re{[Δ]ij}| ≤

ρ

2
, |Im{[Δ]ij}| ≤

ρ

2
, ∀i, j

}
.

(6)
Instead of a particular choice, in this paper we consider a

general convex uncertainty set that covers all common uncer-
tainty models, e.g., [2–9], as special cases. To be more exact,
we only assume that E is a nonempty compact convex set. If
the maximin robust design problem (4) with a general convex
uncertainty set can be solved, so can the special cases. We
show that this goal can be efficiently achieved by solving just
a simple convex optimization problem.

3. OPTIMAL ROBUST PRECODER

In this section, we provide the optimal solution to the max-
imin problem (4). Note that, a similar general convex un-
certainty set was also considered in [3], but the authors only
focused on a power allocation problem, simplified from (4)
by imposing possibly suboptimal transmit directions. In con-
trast, we are interested in finding the globally optimal solution
to (4) in an efficient way.

To solve the maximin problem (4), one possible way is to
express it as an ordinary maximization problem

maximize
Q∈Q

Ψ�(Q) � min
Δ∈E

Ψ(Q,Δ). (7)

Since minimization preserves concavity [11],Ψ�(Q) is a con-
cave function and thus (7) is a convex optimization problem.
On the other hand, the optimal value function Ψ�(Q) is usu-
ally nondifferentiable, so the common gradient-based meth-
ods, such as the Newton method or gradient-based interior-
point methods, are not applicable. In this case, one can exploit
subgradient-based methods, e.g., the subgradient projection
method [12], which, in addition of the computation of a sub-
gradient, suffers a slow convergence speed (see [13] for more
details).

In this paper, we solve the maximin problem (4) in a more
elegant way. The following result provides the optimal solu-
tion to (4) from the dual perspective of convex optimization.
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Proposition 1. Suppose that E is a nonempty compact convex
set and Q is defined in (2). Consider the following convex
problem:

minimize
Δ∈E,t

Pt

subject to (Ĥ−Δ)H(Ĥ−Δ) � tI
(8)

and letZ� be the optimal Lagrange multiplier associated with
the constraint (Ĥ − Δ)H(Ĥ − Δ) � tI. Then, Z� is the
optimal solution to the maximin problem (4).

Proof: To show that Z� is a solution to (4), we write the
partial Lagrangian of (8) as

L(Δ, t;Z)

= Pt+Tr
(
Z((Ĥ−Δ)H(Ĥ−Δ)− tI)

)
= (P − Tr(Z)) t+Tr

(
Z(Ĥ−Δ)H(Ĥ−Δ)

)
(9)

with Lagrange multiplier Z � 0. The dual function is given
by

G(Z) = inf
Δ∈E,t

L(Δ, t;Z) (10)

whose domain is Z � {Z : Z � 0, G(Z) > −∞}. To
guarantee that G(Z) is bounded from below, it follows that
P − Tr(Z) = 0. As a result, we have

Z = {Z : Z � 0, Tr(Z) = P} (11)

G(Z) = min
Δ∈E

Tr
(
Z(Ĥ−Δ)H(Ĥ−Δ)

)
(12)

so that the dual problem of (8) is

max
Z∈Z

min
Δ∈E

Tr
(
Z(Ĥ−Δ)H(Ĥ−Δ)

)
. (13)

Note that the constraint Tr(Z) = P in (13) can be relaxed
to Tr(Z) ≤ P , since the optimal Z is always achieved with
equality. Now, comparing (13) with (4), one can find that they
are exactly the same with Z = Q. Therefore, the optimal
Lagrange multiplier Z� is also the optimal solution to (4).

Proposition 1 indicates that the robust precoder can by ob-
tained by solving the convex problem (8), which consists of a
differentiable objective and a convex feasible set, thus being
solvable by the common gradient-based numerical methods.
Note that (Ĥ − Δ)H(Ĥ − Δ) is a matrix convex function
of Δ in the positive semidefinite space SN+ [11], so (Ĥ −

Δ)H(Ĥ−Δ) � tI is a convex constraint and (8) is indeed a
convex problem. Moreover, denoting the optimal primal so-
lution to (8) by Δ�, the pair (Z�,Δ�) is in fact a saddle point
of Ψ(Q,Δ), for which we refer the interested reader to [13]
for more details.

4. PRACTICAL REFORMULATION

So far we have theoretically shown that the solution to the
maximin problem (4) can be found by solving (8) instead.
However, it should be pointed out that, although (8) is a con-
vex problem, the constraint (Ĥ−Δ)H(Ĥ−Δ) � tI is given
by a matrix convex function. This causes a difficulty in prac-
tice, because most optimization methods as well as software
packages are not designed to solve a convex problem involv-
ing matrix convex functions.

The question now is: Is there a more practical method? In
the following, we provide a positive answer to this question
by showing that one can solve, instead of (8), an equivalent
but more tractable problem.

Proposition 2. Suppose that E is a nonempty compact convex
set, and consider the following convex problem:

minimize
Δ∈E,t

Pt

subject to

[
tI (Ĥ−Δ)H

Ĥ−Δ I

]
� 0.

(14)

Denote its optimal solution by (Δ�, t�) and let

Y� �

[
Y�

11 Y�
12

Y�
21 Y�

22

]
∈ S

N+M
+

where Y�
11 ∈ S

N
+ , Y�

22 ∈ S
M
+ , and Y�

12 = Y�H
21 ∈ C

N×M ,
be the optimal Lagrange multiplier associated with the con-
straint [

tI (Ĥ−Δ)H

Ĥ−Δ I

]
� 0. (15)

Then, (Δ�, t�) is also the optimal solution to (8), and Z� =
Y�

11 is the optimal Lagrange multiplier associated with the
constraint (Ĥ−Δ)H(Ĥ−Δ) � tI in (8).

Proof: The equivalence between (14) and (8) can be eas-
ily proved by using the Schur complement. The difficulty lies
in the relation between the optimal Lagrange multipliers of
these two problems. This can be achieved by exploring the
optimality conditions of (14) and (8). Due to the space lim-
itation, we refer the interested reader to [13] for the detailed
proof.

Note that the constraint (15) is a linear matrix inequality
(LMI), i.e., a very tractable form of convex optimization in
practice. Therefore, (14) can be efficiently solved by many
software packages, e.g., CVX [14]. Such software packages
contain numerical methods, e.g., primal-dual interior-point
methods [11], that can provide not only the optimal primal
variables but also the optimal dual variables, i.e., Lagrange
multipliers. In particular, when the uncertainty set is given
by En in (5) or Eq in (6), (14) is or can be transformed into a
semidefinite program (SDP).
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Fig. 1. Worst-case received SNR versus SNR at ρ = 1 and 2
for E = Eq and M = N = 4.
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Fig. 2. Worst-case received SNR versus quantization stepsize
ρ at SNR = 12dB for E = Eq and M = N = 4.

5. NUMERICAL RESULTS

To demonstrate the effect of the robust MIMO precoding, we
compare different precoding strategies, according to the phi-
losophy of worst-case robustness, through their worst-case
performance. Moreover, to take into account different chan-
nels, the worst-case performance is averaged over the nominal
channel Ĥ, whose elements are randomly generated accord-
ing to zero-mean, unit-variance, i.i.d. Gaussian distributions.

Due to the space limitation, we consider only the uncer-
tainty set Eq in (6) for quantization errors. The robust pre-
coding is compared with the beamforming strategy that trans-
mits only over the maximum eigenmode of Ĥ, the uniform-
power strategy that allocates the transmit power equally over
all eigenmodes of Ĥ, and the semi-robust strategy in [3] that
provided a robust power allocation but with fixed (subopti-
mal) transmit directions. Fig. 1 shows the worst-case received
SNRs of the four strategies versus SNR for different quanti-
zation stepsizes, and Fig. 2 displays the relation between the

worst-case received SNR and the quantization stepsize. It can
be clearly seen that the robust strategy always outperforms the
non-robust or semi-robust strategies in terms of worst-case
performance, and that the gain becomes larger as the uncer-
tainty increases.

6. CONCLUSION

We have considered a robust MIMO precoding design, for-
mulated as a maximin problem, to maximize the worst-case
received SNR or minimize the worst-case PEP for an STBC
with imperfect CSIT. Instead of a particular choice, we have
considered a general convex uncertainty set, which include
most commonly used uncertainty models as special cases.
The robust MIMO precoder, i.e., the solution to the maximin
problem, was found to be the optimal Lagrange multiplier of
a simple convex problem. We then reformulated this convex
problem into an equivalent form that can be efficiently solved
in practice.
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gunas, “A robust maximin approach for MIMO communications with
partial channel state information based on convex optimization,” IEEE
Trans. Signal Process., vol. 54, no. 1, pp. 346-360, Jan. 2006.

[4] A. Abdel-Samad, T. N. Davidson, and A. B. Gershman, “Robust trans-
mit eigen beamforming based on imperfect channel state information,”
IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1596-1609, May 2006.

[5] M. B. Shenouda and T. N. Davidson, “On the design of linear
transceivers for multiuser systems with channel uncertainty,” IEEE J.
Sel. Areas Commun., vol. 26, no. 6, pp. 1015-1024, Aug. 2008.

[6] N. Vucic, H. Boche, and S. Shi, “Robust transceiver optimization in
downlink multiuser MIMO systems,” IEEE Trans. Signal Process.,
vol. 57, no. 9, pp. 3576-3587, Sep. 2009.

[7] J. Wang and D. P. Palomar, “Worst-case robust MIMO transmission
with imperfect channel knowledge,” IEEE Trans. Signal Process., vol.
57, no. 8, pp. 3086-3100, Aug. 2009.
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