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ABSTRACT

Signal Time-Of-Arrival (TOA) estimation accuracy is fun-
damental to the functioning of Global Navigation Satellite
Systems (GNSSs). This work investigates a variant of the
Ziv-Zakai bound (ZZB) named modified ZZB (MZZB) as
a theoretical performance limit in TOA estimation, to over-
come the heavy computational effort caused by the presence
of nuisance parameters (carrier amplitude/phase, channel
coefficients). (M)ZZB is adopted to analyze the theoretical
performance of signal delay estimators in the different phases
of acquisition and tracking, and numerical results are shown
for the main GNSS standard signal formats: BPSK and (fil-
tered) Binary Offset Carriers (BOC) modulations in Additive
White Gaussian Noise (AWGN) channel.

Index Terms— Modified Ziv-Zakai bound, Time-of-
Arrival (TOA) estimation, acquisition, tracking, Binary Off-
set Carrier (BOC).

1. INTRODUCTION

“One-way signal Time-Of-Arrival (TOA)” estimation rep-
resents the basis of all current Global Navigation Satellite
Systems (GNSSs). The accuracy of user position is directly
related to the (pseudo-)ranges estimation performed by the
receiver via TOA estimation. Commonly the well known
Cramér-Rao bound (CRB) is adopted as mean square error
(MSE) theoretical benchmark for unbiased estimators, for
its ease of calculation. Unfortunately, it requires sufficiently
smooth signal waveform and possibly a differentiable pa-
rameter probability density function (pdf). In some cases
of practical interest, both these conditions are not satisfied,
especially as far as the standard GNSS Signal-In-Space are
concerned. GPS, GLONASS, Galileo, and other GNSSs
adopt Binary Phase Shift Keying (BPSK) and Binary Offset
Carriers (BOC) modulations [1] with (theoretically) rectan-
gular pulses, so that the CRB is not applicable if they are not
filtered. Other bounds can be found in literature, which prove
to be tighter than the CRB, but cannot in general be easily cast
into a simple closed form expression. One of these is the Ziv-
Zakai bound (ZZB) [2], [3] that stems out of detection theory

and also considers possible parameter a priori information.
The ZZB shows no constraints of parameter pdf, signal shape
or SNR value resulting a very interesting MSE benchmark
for any signal format. Unfortunately, as well as other bounds,
computing the ZZB in the presence of nuisance parameters
is very hard. In this contribution a modified version of the
bound is adopted, i.e. the modified ZZB (MZZB) [4],[5], [6],
whose computation in the presence of nuisance parameters
is much simpler. Besides, whenever the size of the nuisance
vector gets large the gap between the two versions shows to
be negligible [4], [5]. We use the MZZB here to evaluate the
performance of TOA estimation during signal acquisition and
tracking for standard GNSS SIS (BPSK, BOC). In particular,
assuming the proper a priori information, we can evaluate the
minimum C/N0 threshold that is needed to acquire or track
the signal delay with an MSE lower than a fixed value.

2. MODIFIED ZZB FOR TOA ESTIMATION

The problem considered here is TOA estimation for position-
ing systems for a generic signal in Additive White Gaussian
Noise (AWGN). The model of the received signal is r (t)=
s (t− τ, γ)+w(t), where s (t, γ) is the transmitted signal, τ is
the signal delay with a uniform distribution in [0,Tx] (differ-
ent distributions could be considered as well), γ is an array of
“stray” (nuisance) parameters, and w(t) is a white Gaussian
process with Power Spectral Density (PSD) equal to N0/2.
In [2],[3],[4] and [5] the ZZB and its modified version are de-
fined step by step for this scenario. The final expression of
the modified ZZB runs as follows:

MZZB(τ)�
1

Tx

∫ Tx

0

Δ

∫ Tx−Δ

0

Q

⎛
⎝
√
Eγ{d2(Δ, h|γ)}

2N0

⎞
⎠dhdΔ (1)

where Eγ{·} indicates statistical expectation over all possible
values of γ, Tx is the maximum uncertainty on the delay and
d is the euclidean distance between the two (equiprobable)
delayed signals s(t−h|γ) and s(t−h−Δ|γ), conditioned to
the particular γ. When the estimation time T0 is large, the
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squared distance between the signal replicas turns out to be

d2(Δ, h|γ) = 2ET0
(1−ρT0

(Δ|γ)) (2)

where the (conditional) signal correlation function defined as

ρT0
(Δ|γ) = �

{∫ T0

0 s (t|γ) s∗ (t−Δ|γ)dt
}
/ET0

is normal-

ized to the signal energy ET0
= PxT0 with Px the signal

power (which is usually also called C).

3. APPLICATION OF MZZB TO STANDARD
SIGNAL-IN-SPACE

Let us consider now the performance of TOA estimation for
BPSK and BOC signals in an Additive White Gaussian Noise
(AWGN) channel. The BOC(fs, fc) modulations [1] consist
of superposing a square wave subcarrier of frequency fs=mfg
to the spreading code of a standard Spread-Spectrum BPSK
(SS-BPSK) of rate fc=nfg=1/Tc, where m and n are two
integers and fg=1.023MHz. The chip time Tc is sliced in Ω

half-cycle times Ts

2 of the square wave and Ω=2 fs
fc
=2m

n is
the modulation order. The BOC(fs,fc) signal can be written
as

sBOC (t)=sBPSK(t) sign [sin(2πfst)] (3)

with sBPSK(t)=
√
2Px

∑
k

akrect
(

t−kTc−Tc/2
Tc

)
, where Px

is the signal power, ak are the independent and identically
distributed (i.i.d.) {±1} chips.

The superposition (product) with the square wave leads to
splitting and shifting the baseband SS-BPSK spectrum. This
allows for better performance in terms of tracking accuracy
than the original BPSK owing to Gabor bandwidth enhance-
ment, but at the cost of a worsening of the correlation function
which contains multiple peaks that lead to potential acquisi-
tion and tracking ambiguities. One of the scopes of this work
is to emphasize the capability of the MZZB bound to take into
account these ambiguities.

The distance needed in (2) can be easily computed start-
ing from (3), evaluating the conditional squared distance (2),
averaging on nuisance parameters γ = ā that in our case are
the i.i.d. code chips. The final expression of the bound in (1)
is reported for clarity in the (4), where ρ(Δ) is the theoretical
BOC correlation function,Ec = C ·Tc is the signal energy per
chip, L is the number of observed chips and C is the power
of the received signal.

Figure 1 shows the normalized autocorrelation functions
of the theoretical BOC signals and of BPSK, with different
chip rates, so that the 99% power bandwidthB99% is the same
for all signals. The BOC autocorrelation function runs out in
a single chip time, with a number of side lobes, Ω−1 for each
side, that have non negligible relative peaks compared to the
main lobe at τ = 0. If we assume a delay uncertainty equal
or greater than a chip time, the estimation will be certainly
impaired by the ambiguities caused by these side lobes.

In a more realistic scenario, filtered signals have to be
considered. In this case the correlation becomes ρF(Δ) =
ρ(Δ)⊗h (Δ)⊗h (−Δ) where h (t) is the impulse response of
the filter, that we assume low-pass with a −3dB bandwidth
BW here chosen equal to the B99% of the signals. Maintain-
ing the previous hypotheses on binary random chips, the fil-
tered correlation function is the only difference in the MZZB
resulting expression to be substituted in (4).

Fig.2 depicts the theoretical performance for these sig-
nals in terms of RMSE. The uncertainty on the delay for the
MZZB computation is fixed to one chip time (Tx = Tc), dif-
ferent for each signal, so the integration in (4) on Δ consider
the contributions of all of the correlation side lobes.

For (very) low C/N0 (SNR), the RMSE tends to Tc/
√
12,

i.e. the standard deviation of a uniform random variable τ in
[0, Tc]. In this region, the optimum estimator actually uses
the a priori information on τ , estimating the variable with
its mean value, and neglecting received noise-corrupted data.
For a larger C/N0, the MZZB curves decrease proportionally
to (C/N0)

−1, perfectly matching with the MCRB [7]. The
boundary of the two regions is a threshold, and the higher the
BOC modulation order, the higher the number of ambiguities
in the correlation function and the higher the C/N0 threshold
to attain the “high-SNR” zone. For low and medium C/N0

values, as expected, the mismatch between the MZZB and the
MCRB curves is due to the absence of a priori information for
the latter.

4. A BOUND FOR SIGNAL ACQUISITION AND
TRACKING PERFORMANCE

One advantage of using the (M)ZZB is that by properly select-
ing the a-priori parameter uncertainty, which depends on the
particular stage and scheme of estimation, we can model the
two different stages of initial acquisition (large uncertainty)
and steady-state tracking (smaller uncertainty).

Let’s start from TOA acquisition. Assuming no informa-
tion on the delay, we can consider it as a random variable uni-
formly distributed on a chip code period (Tx =NTc). Once
the uncertainty is fixed, the MZZB can be computed for the
acquisition performance and the curve of RMSE can be plot-
ted wrt the C/N0 ratio, to find the best operating range in
which the optimum estimator can achieve a pre-set accuracy
during this phase. We assume also that signal is acquired
when the estimation error ε falls within a pre-set range r,
|ε| ≤ [r/2], event which is associated to a so called proba-
bility of detection: Pd = Pr {|ε| ≤ [r/2]}. Assuming that the
error ε is a Gaussian random variable1 N (0, σ0), then Pd=1−
2Q
(
[r/2]
σ0

)
. Inverting this relation, a maximum standard de-

viation threshold for the error and a minimumC/NAcq
0 (Pd, r)

threshold can be found from the RMSE curve of the MZZB.

1This is true for instance for Maximum-Likelihood estimator on a large
estimation window
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MZZB(τ)=
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Of course, the MZZB only depends on the starting un-
certainty interval and not on the acquisition scheme adopted.
Usually, during signal acquisition the search of the coarse de-
lay is done on a limited number of “cells” with a duration δT .
The total uncertainty interval is partitioned, and the higher
the number of cells, the more accurate the estimation. On the
other hand, the higher the number of cells, the longer the ac-
quisition time, which impacts the time to first fix. Once the
signal is acquired, the (residual) error will be |ε| ≤ [δT/2]
(r= δT ). Usually, δT is a fraction of the pull-in-range (PIR)
of the estimator used for the tracking of the signal, to ensure
the tracking is initiated with a sufficiently small error. After
acquisition is (successfully) accomplished, we have to update
the uncertainty for the residual TOA to just the width of a time
cell, and a new MZZB, that applies during tracking, has to be
computed.

For this analysis we assume a conventional Early-Late
estimator, whose pull-in-range, here defined as its linear S-
curve non ambiguous region, is approximated by the early-
late spacing d, which in turn is usually chosen equal to an
half of the signal autocorrelation main lobe width (named
ACW). To sum up, once we have the ACW, we can evaluate
the relevant acquisition performance through the MZZB (with
full uncertainty) and the needed residual error range given by
δT =PIR= d= ACW

2 . The RMSE curve of the bound will
depend on the particular shaping of the autocorrelation func-
tion of the signal, and so the threshold C/NAcq

0 (Pd, P IR)
will depend on its characteristics.

Coming now to the tracking stage, the MZZB ingredients
are again the delay uncertainty (much narrower now), and
the signal autocorrelation function. The curves for tracking
are re-computed assuming the residual (acquisition) error as
a uniform random variable on the time bin span Tx = δT =
ACW

2 . During the tracking phase, the error has to stay inside
the estimator PIR, so an operating range can be found choos-
ing the maximum error deviation threshold with the experi-
mental rule 3σDLL≤ PIR

2 = ACW
4 , reading from the MZZB

curve the minimum C/NTr
0 which ensures the constraint.

4.1. Results

Once the methodology is clear, we analyzed the performance
of BPSK and BOC Galileo SIS. The signal parameters that we
considered are defined in the Open Service Signal-In-Space
Interface Control Document Issue 1 (OS SIS ICD) of Febru-
ary 2010. In particular, we considered the specific ranging
code chip rates,the primary code lengths (NTc) and the re-
ceiver bandwidths, computing the correlationACW from the

theoretical signals. For the standard SIS, we reported the
maximum standard deviations for the acquisition (for a set of
Pd) and tracking, with the respective minimum C/N0 thresh-
olds. In the analysis we assume the well known equivalence
T0 = 1/2Bn, between the equivalent observation time and
DLL noise bandwidth Bn, considering a common value of
Bn=10Hz for tracking and a T0=0.05 for acquisition.

Figure 3 shows the curves of RMSE for acquisition and
tracking. In addition, Tab. 1 summarizes our results and
reports the parameters adopted. Regarding the acquisition
performance, the minimum C/NAcq

0 threshold increases, as
is natural, for increasing Pd, and ranges from 28.3 to 29.7
dBHz. Fine estimation requires a lower C/NTr

0 than the pre-
vious stage, thanks to its better a priori information, with val-
ues range from 16.4 to 23.1 dBHz, i.e. more than 10 dBHz
difference compared to the acquisition ones. The σ values re-
ported in the table are the maxima allowable for the minima
C/N0. Obviously better σ values can be achieved with higher
C/N0, following the curves computed in Fig.3.

5. CONCLUSIONS

This work investigated a modified version of the Ziv-Zakai
bound, the so-called MZZB, that makes it feasible to find the
bound in the presence of nuisance parameters, such as the
chips of a random ranging code. The MZZB was applied
to BPSK and BOC modulations, and allowed to highlight
the impact on time estimation of signal autocorrelation side
lobes. The related performance loss was shown to be strictly
related to the number and the amplitude of the lobes. The
MZZB proved also expedient to estimate the minimumC/N0

thresholds that ensure safe acquisition of the Galileo SIS
under a certain probability of detection, and to keep signal
tracking.
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Fig. 1: Theoretical BOC correlation functions.
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Fig. 2: Multi-peaks effect - filtered BOC modulations.
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Fig. 3: Theoretical acquisition and tracking performance of
Galileo GNSS by means of MZZB.
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