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ABSTRACT

We investigate non-coherent FH/BFSK detection in band

multitone jamming when Bayesian detection is unfeasible

due to lack of knowledge on a priori jamming state probabili-

ties. We derive joint-suboptimal decision metrics of jamming

states under Minimax hypothesis testing in band multitone

jamming and AWGN. A sub-optimal generalized likelihood

ratio test is also explored. Simulation results demonstrate

the robustness of the proposed approach which combines

sub-optimal generalized likelihood ratio test with generalized

FH/BFSK modulation.

Index Terms— Anti-jamming, detection, hypothesis test-

ing, frequency hopping, modulation.

1. INTRODUCTION

Frequency hopping (FH) is a widely used technique in mil-

itary communications, due to its inherent security and capa-

bility to effectively combat various kinds of interference such

as multipath fading, multiple access interference and inter-

ference from co-existence systems. In recent years, FH has

also been adopted in Multiband OFDM Ultra Wideband (MB-

OFDM UWB) systems [1]. From viewpoints of secure com-

munications, band multitone jamming (BMJ) remains a harm-

ful means that dominates the overall performance degradation

[2, 3] in FH communications. In [4], a novel complexity-

reduced scheme, Bayesian joint-suboptimum maximum like-

lihood (JSML) detector, was proposed to counteract the exis-

tence of BMJ for non-coherent frequency hopping binary shift

keying (FH/BFSK) with no aid of jamming state indication

and resultant energy of signal-plus-jammer tone. However,

the Bayesian JSML detector [4] still requires knowledge on

a priori probabilities of jamming states. Hostile band multi-

tone jammer is able to keep randomly changing the amount of

jamming tones and their spectrum locations accordingly. The

Bayesisan approach thus is too ideal to be applied to practical

situations.

In this paper, we remove assumptions that were made

for Bayesian approach [4]. We present Minimax JSML: the

JSML under Minimax hypothesis testing [5] with minimum

probability of error cost for cases in which only the jam-

ming state probabilities are unavailable. We further present

a sub-optimal generalized likelihood ratio (GLR) test. In the

scenario of BMJ and AWGN only, numerical results show

that anti-jamming performances of both Minimax JSML and

sub-optimum GLR test are pretty close to that of Bayesian

JSML [4] when BMJ dominates the overall performance.

When both AWGN and BMJ dominate performances,

however, it is found that Minimax JSML and sub-optimal

GLR test no longer give satisfactory anti-jamming perfor-

mance in high signal-to-jamming ratio (SJR) scenarios. On

the other hand, in BMJ, AWGN and multipath fading en-

vironment, the delayed paths introduce ”non-orthogonality

interference” which also degrades the performance. To over-

come the above bottlenecks with no need to rely on a priori
probabilities of jamming states, we propose an approach that

combines sub-optimal GLR test and generalized modulation

scheme of FH/BFSK [6]. This approach is shown by simu-

lation to give robust anti-jamming and anti-multipath fading

performances.

2. SYSTEM MODEL

In this paper, we consider the non-coherent FH/BFSK system

model described in [3, 4]. We briefly restate this model as

follows.

As shown in Fig. 1, the entire spread spectrum bandwidth

Wss is equally partitioned into Nt = Wss/Rc = 2Nb tones,

where Rc is chip rate and Nb is total number of bands. These

tones are equally spaced and further partitioned into Nb non-

overlapping sub-bands. Fig. 1 depicts the structure of Nb

FH/BFSK sub-bands and corresponding Nt = 2Nb tones. We

consider one-hop-per-symbol scenario in which the hop rate

equals the chip rate, and so does the symbol rate Rs(= 1/Ts).
Let J be the total jamming power, S be the power of the trans-

mitted signal for the desired user, Es be the desired symbol

energy, NJ be the power spectrum density of the jamming

noise with NJ = J/Wss, and Q be the total number of jam-

ming tones, each of which has power J/Q = S/α.

Assume timing recovery is ideally done at the desired

(anti-jamming intended) user’s receiver. It is also assumed
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Fig. 1. Structure of Nb FH/BFSK sub-bands and tones

that one hopping interval of each jamming signal is syn-

chronized to one symbol interval of the desired user. The

received signal during the l-th symbol interval, l = 0, 1, ...,
is expressed by Rl(t) = Sl(t) + Jl(t) + n(t), where n(t) is

zero mean AWGN with two-sided power spectrum density

N0/2 � σ2. The transmitted signal corresponding to l-th
symbol interval is Sl(t) =

√
2Sq(t − lTs) cos[2π(fc(l) +

f(l))t+ θs(l)]. The jamming signal is denoted by Jl(t), with

expression Jl(t) =
∑Q

j=1

√
2S/α q(t− lTs) cos[2πfj(l)t+

θj(l)]. We use q(t) to denote the normalized rectangular

pulse function with duration Ts. Assume fc(l) = 2h/Ts,

where h is a positive integer controlled by a hopping se-

quence. When f(l) equals f0 ≡ −1/(2Ts), symbol 0 is sent.

Likewise, when f(l) equals f1 ≡ 1/(2Ts), symbol 1 is sent.

{f1(l), f2(l), ..., fQ(l)} is a set of distinct jamming frequen-

cies. That is, in each hopping interval, Q jamming signals

randomly dwell at Q distinct tones. fj(l) equals a tone within

Wss that is used by the desired user.

In the absence of n(t), E0 and E1 are respectively the

output energies at f0 and at f1. These Q jamming tones are

assumed distinct. Given that bm = i (i.e., the m-th symbol is

transmitted at the symbol tone fi), at most two jamming tones

simultaneously dwell in a band (i.e., f0 and f1), which can

be categorized to four jamming states. These four jamming

states are denoted by Hik, where the subscript i stands for

the symbol i, and k ∈ {1, 2, 3, 4}. For example, given that

symbol 0 is sent, four hypotheses are described as follows.

H01 (Both tones are not jammed): E0(H01) = 1, E1(H01) =
0.

H02 (Symbol tone is not jammed and the other tone is

jammed): E0(H02) = 1, E1(H02) = 1/α.

H03 (Symbol tone is jammed and the other tone is not

jammed): E0(H03)=1+1/α+2 cosφ/
√
α,E1(H03)=0.

H04 (Both tones are jammed): E0(H04) = 1 + 1/α +
2 cos(φ)/

√
α,E1(H04) = 1/α.

We let φ denote the phase difference between the symbol

tone and the jamming tone. φ is assumed to be uniformly

distributed in [0, 2π).

3. MINIMAX HYPOTHESIS TEST AND
GENERALIZED LIKELIHOOD RATIO TEST

Without loss of generality, we assume symbol 0 and symbol 1

are equiprobable. Nonetheless, jamming state a priori prob-

abilities, p(Hik), are no longer known by the desired user.

The Bayesian JSML [4] can not be applied to this case as it

requires knowledge of p(Hik).
Let ri � [ric, ris], where ric and ris are in-phase and

quadrature phase components of normalized received signal

at fi, respectively. In other words,

ric =
∫ (m+1)Ts

mTs

√
2Rm(t)2

EsTs
cos[2π(fc(m) + fi)t]dt,

ris =
∫ (m+1)Ts

mTs

√
2Rm(t)2

EsTs
sin[2π(fc(m) + fi)t]dt.

We define R(p, δ(r0, r1)) as the expected cost for a given

decision rule δ when jamming states’ a priori probability dis-

tribution denoted by p � [p(H01), p(H02), p(H03), p(H04)],
is true. Let δ∗p(r0, r1) be the Bayesian-optimal decision rule

under a priori probability distribution p. Clearly, we have

R(p, δ∗p(r0, r1)) ≤ R(p, δ(r0, r1)), ∀δ ∈ Δ,

where Δ represents the set of all admissible decision rules.

In Minimax hypothesis testing, we find out p∗ that has the

maximum expected Bayesian cost among all legitimate p’s.

That is,

R(p∗, δ∗p∗(r0, r1)) ≥ R(p, δ∗p(r0, r1)), ∀p �= p∗, (1)

where δ∗p∗(r0, r1) denotes the Minimax decision rule.

We omit notations r0 and r1 for simplicity. In this pa-

per, we consider the the minimum probability of error (MPE)

cost function. Since symbol 0 and symbol 1 are equiprobable

and their sub-hypotheses (i.e., Hik’s) are symmetric, we have

p(δ∗p = Hjl|Hik) = p(δ∗p = Hil|Hjk). Then it can be shown

that

R(p, δ∗p) =
4∑

k=1

4∑
l=1

p(δ∗p = H1l|H0k)p(H0k). (2)

Equation (2) is the probability of error under the assump-

tion that p is the true a priori probability distribution of

jamming states. Hence, δ∗p∗ is the Minimax decision rule with

MPE cost, where p∗ � [p∗(H01), p
∗(H02), p

∗(H03), p
∗(H04)]

satisfies

p∗ = argmax
p

R(p, δ∗p). (3)

We use L∗
ik to denote the Minimax JSML decision metric

of jamming state Hik. Through similar procedure in [4], it

can be shown that

L∗
01 ≡ r0 +A+ C∗

01, L∗
11 ≡ r1 +A+ C∗

11,

L∗
02≡r0+

√
r21
α +A+B+C∗

02, L∗
12 ≡r1+

√
r20
α +A+B+C∗

12,

L∗
03 ≡ r20/2 + C∗

03, L∗
13 ≡ r21/2 + C∗

13,

L∗
04≡r20/2+

√
r21
α +B+C∗

04, L∗
14≡r21/2+

√
r20
α +B+C∗

14,

(4)

where A = −1/2; B = −1/(2α) − σ2 ln(2π/(σ2
√
α))/2;

and C∗
ik = σ2 ln(p∗(Hik)).

A test called GLR test can be applied to a case in which

there does not exist an Uniformly most powerful test (UMP)
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test. The corresponding decision rule δGLR first takes the max-

imum among likelihood functions under sub-hypothesis Θi ∈
{Hi1, ..,Hi4}. Then it decides H1 if

maxΘ1 p(r0,r1|Θ1)

maxΘ0 p(r0,r1|Θ0)
≥ γ,

and H1 otherwise. Here we take γ = 1, it can be shown that

the corresponding decision metric L̃ik the same as L∗
ik with-

out C∗
ik in (4).

4. NUMERICAL RESULTS

In our simulation, we consider a slow frequency hopping

(SFH) system for single-diversity and multiple-diversity sce-

narios. We follow the same parameter setting as in [4], where

Nb is set by 100 in the worst case (WC) BMJ scenario. The

optimal parameter setting for Q and α in the WC BMJ is de-

scribed in Chapter 2 of [3]. For n = 1 BMJ, α is set equal to

0.95 to make the jamming tone’s energy slightly greater than

the desired symbol tone’s energy. We consider moderate SNR

(13.35 dB) conditions. We compare Minimax JSML detec-
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Fig. 2. BERs in the WC n = 1 BMJ, SNR = 13.35 dB
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Fig. 3. BERs in the WC n = 2 BMJ, SNR = 13.35 dB

tor and sub-optimal GLR detector with the Bayesian JSML

detector [4], and other commonly used diversity combining

approaches such as hard-decision majority-vote (HDMV) re-

ceiver, product-combining (PC) receiver, and self-normalized

(SN) receiver [7]. Note that the Bayesian JSML detector [4]

is not optimal and it requires knowledge on a priori jamming

state probabilities. Fig. 2 shows single diversity (U = 1)

and triple (U = 3) diversity anti-jamming performances in

n = 1 BMJ; whereas Fig. 3 shows single diversity (U = 1)

and double (U = 2) diversity anti-jamming performances in

n = 2 BMJ. We observe that the HDMV, PC and SN receivers

are more vulnerable to BMJ, compared to the proposed de-

tectors. In addition, the ML-I receiver [7] with incomplete

jammer state information is unable to deliver satisfactory per-

formance. One would expect that Bayesian JSML detector

outperforms Minimax JSML and GLR detectors according to

the fact that Bayesian JSML detector utilizes the knowledge

on p(Hik) while the other two do not. Nonetheless, Fig. 2 re-

veals negligible differences among Bayesian JSML, Minimax

JSML and sub-optimal GLR detectors. On the other hand, in

n = 2 BMJ and moderate SNR (13.35dB), AWGN cannot be

ignored. In this scenario, the Minimax test no longer gives

diminishing error probabilities in high SJR conditions, as

shown in Fig. 3. We can further see that when SJR becomes

higher, the GLR test can no longer give satisfactory anti-

jamming performances accordingly. However, combining the

sub-optimal GLR test with a generalized FH/BFSK signaling

scheme makes it possible to lower the error probability curve

in high SJRs. Intuitively, generalized modulation scheme of

FH/BFSK destroys jammer’s side information on the original

FH/BFSK band structure and thus improves anti-jamming

performances. In Fig. 3 we show curves of GLR test com-

bined with Random FH/BFSK scheme in which the two tones

defined in a FH/BFSK modulation band are randomly chosen

from all possible tones within the whole spread spectrum

Wss. These two curves (U = 1 and U = 2) perform bet-

ter than that of the conventional FH/BFSK with Bayesian

JSML when SJR is lower than approximately 17dB, and their

anti-jamming performances remain competitive when SJR is

17dB or even higher.

In realistic wireless environment, multipath fading is a

major cause of performance degradation. It has been pointed

out by [8, 9, 10] that a two-path channel with independent

Rayleigh fading is a better model of a real wireless channel.

In this simulation setting we consider two-path Rayleigh fad-

ing. The impulse response of two-path Rayleigh fading chan-

nel is h(t) =
∑2

n=1 βnδ(t − τn) exp(jθn), where τ1 = 0,

and τ2 is uniformly distributed in [0, Ts). The path amplitude

βn is Rayleigh distributed with parameter

√
β̄2
n/2. We de-

note the average power of the n-th path by β̄2
n, which stands

for the mean square value of the n-th path amplitude and is

expressed by β̄2
n = β̄2

1 exp(−τn/Ts). θn is the corresponding

random phase of the n-th path and is statistically independent

3035



of βn. Fig. 4 and Fig. 5 illustrate simulation results when

β̄2
1 = 1. In n = 1 BMJ, by comparing to Fig. 2, we can

see apparent performance degradation in Fig. 4, due to the

existence of two-path fading. Although the Bayesian JSML,

Minimax JSML and Sub-optimal GLR receivers give better

performances than HDMV, PC and SN, they all perform fairly

close to one another. In addition, since n = 1 BMJ dominates

the performance as well, these receivers remain with simi-

lar performance relationships to those in Fig. 2. For n = 2
BMJ, by comparing to Fig. 3, we observe one major differ-

ence shown in Fig. 5: the Bayesian JSML is not compara-

ble to Sub-optimal GLR test (with Random FH/BFSK). The

Bayesian JSML proposed in [4] is no longer joint suboptimal

under the condition of multipath Rayleigh fading and it even

performs worse than SN and PC receivers. In n = 2 BMJ,

the multipath fading becomes dominant. The delayed sec-

ond path removes the orthogonality relation between signals

which correspond to two BFSK symbols in conventional FH

systems, where both symbol tones are located adjacently in

a common modulation band. Hence, the ”non-orthogonality

interference” degrades the performance. Sub-optimal GLR

test with Random FH/BFSK does not require a priori jammer

state probabilities and it possesses a property that the proba-

bility of both symbol tones being located contiguously to each

other is low enough given the total number of tones allowed to

use is assumed sufficiently large (in other words, both symbol

tones are usually far away from each other), which alleviates

the ”non-orthogonality interference” from the delayed second

path. The GLR test under this kind of randomized modulation

scheme is comparable to PC and SN receivers. The reader can

see differences between performance curves of the GLR test

and PC/SN receivers, as SJR goes higher.
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Fig. 4. BERs in the WC n = 1 BMJ, 2-path Rayleigh fading

5. CONCLUSIONS

For anti-jamming objectives, we present Minimax JSML with

MPE cost and a sub-optimal GLR test without the need to
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Fig. 5. BERs in the WC n = 2 BMJ, 2-path Rayleigh fading

know a priori jamming state probabilities. Though both Min-

imax JSML and sub-optimal GLR test can no longer be ro-

bust as SJR goes high, it is found that an alternative approach

which combines the sub-optimal GLR test and generalized

modulation scheme of FH/BFSK, is able to have robust anti-

jamming performances in high SJRs and in multipath fading

environment.
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