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ABSTRACT
OFDM suffers from inter-carrier interferences in the presence of the
time variation. This paper seeks to quantify the amount of interfer-
ences resulting from wideband channels which assumed to follow
the multi-scale/multi-lag (MSML) model. Due to the fact that the
mobility in wideband channels induces scale effects, Doppler is re-
vealed in a manner distinct from the frequency shifts experienced
in narrowband systems. The MSML channel model results in full
channel matrices both in the frequency and time domains. However,
banded approximations are still possible, leading to significant re-
duction in the equalization complexity. Herein, measures for deter-
mining whether time-domain or frequency-domain should be under-
taken are provided based on the amount of the resulting interference.

Index Terms— Wideband channels, OFDM, equalization,

1. INTRODUCTION

Wideband time-varying channels are of interest in a variety of wire-
less communication scenarios, e.g. ultrawideband terrestrial radio
frequency systems or underwater acoustic systems. Due to the na-
ture of wideband propagation, such channels exhibit fundamental
differences with respect to so-called narrowband channels. In par-
ticular, it has been shown that multi-scale, multi-lag (MSML) chan-
nel descriptions offer improved modeling of wideband channels over
multi-Doppler-shift, multi-lag models [1]. Orthogonal frequency-
division multiplexing (OFDM), as a typical frequency-domain (FD)
transmission, is still attractive to be employed in wideband chan-
nels. Approaches include splitting the wideband channel into paral-
lel narrowband channels [2] or assuming a simplified model which
reduces the wideband channel to a narrowband channel subject a
carrier frequency offset (CFO) [3]. However, prior works ignore the
MSML nature of wideband channels. The FD equalization of block
transmissions over MSML channels is considered in [4]. However, a
quantitative analysis of the inter-carrier interference (ICI) of OFDM
over such MSML channels is still lacking.

In narrowband systems, it is well-known that we can equalize
the time-varying channel either in the time domain (TD) or in the in
the frequency domain [5]. The choice is determined by which do-
main leads to a less equalization complexity than the other domain
to achieve the same performance. This paper is to research the same
question but in wideband systems, and argue that it is sometimes
attractive to perform equalization in the time-domain instead of the
classical frequency domain approaches employed for OFDM. We
begin with a detailed interference analysis of the Doppler effect on
wideband channels both in the frequency domain and time domain.
In particular, we show that the channel matrices in both domains are
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full matrices when subject to Doppler. However, the distribution of
the interference energy is governed by a different mechanism in the
frequency domain than in the time domain. Based on this observa-
tion, we derive a proper approximation method for the corresponding
channel matrices to reduce the equalization complexity. A concise
metric is proposed as a criterion for determining in which domain
the equalization is more appealing.

Notation: Upper (lower) bold-face letters stand for matrices
(vectors); superscript H denotes Hermitian; we reserve j for the
imaginary unit, < k > for integer rounding of a number k, [A]k,m

for the (k, m)th entry of the matrix A; diag(x) for a diagonal ma-
trix with x on its main diagonal, and � for the Hadamard product of
two matrices.

2. SYSTEM MODEL BASED ON AN MSML CHANNEL

We consider a wideband time-varying channel, which is assumed to
have L discrete paths. The lth path is characterized by the follow-
ing three parameters: hl, the path gain; ul, the radial velocity which
is uniquely determined by the incident angle of this path; and τl,
the delay due to the traveling time. Suppose x(t) = s(t)ej2πfct

denotes the transmit signal in the passband with a center frequency
fc. In compliance with the wideband channel assumption, the re-
ceived signal resulting from the lth path rl(t) is related to x(t) by
rl(t) = hl

√
αlx(αl(t − τl)), where αl ≈ 1 + 2ul

c
is the scaling

factor with c the speed of the communication medium.

With a collection of L paths, the input-output (I/O) relationship
after down converting by e−j2πfct can be written as

r(t) =

L−1∑
l=0

hl
√

αls(αl(t − τl))e
j2π(αl−1)fct + w(t), (1)

where w(t) stands for the baseband noise. We denote the channel
embedded in (1) as a MSML channel if there exist at least two paths
l and l′, for which αl �= α′

l and τl �= τ ′
l .

2.1. Frequency-Domain Channel Equalization

Suppose that the baseband transmit signal s(t) consists of K sub-
carriers, and that onto each of the subcarriers, a data symbol bk is
modulated. As a result, we have

s(t) =
1√
K

∑
k∈{0,1,···K−1}

bkej2πkΔft, −Tpre < t ≤ KT (2)

where T denotes the inverse of the signal bandwidth, and Δf =
1/(KT ). Tpre stands for the duration of the cyclic prefix (CP),
which is assumed to be shorter than KT but larger than maxl(αlτl)
to avoid inter-block interference (IBI).

The receiver is assumed to be perfectly synchronized, and we
want to sample the received signal r(t) from the point where the CP
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is stripped off. Due to the MSML channel assumption, the sampling
rate at the receiver is not straightforwardly defined. Optimal resam-
pling for MSML channels is discussed in [6]. For the moment, let
us just assume that the receiver adopts a sampling rate of T/β with
β being a positive number between minl(αl) and maxl(αl) to repre-
sent the resampling ratio. Accordingly, we denote the nth received

sample as r
(β)
n = r(nT/β). Substituting (2) into (1), we have

r(β)
n =

L−1∑
l=0

e
j2πfc

αl−1
β

nT
h

(β)
l

K−1∑
k=0

bke
j2π

αl
β

kn
K e−j2π

αlτl
T

k
K +w(β)

n ,

(3)

where w
(β)
n = w(nT/β), and h

(β)
l = hl

√
αl
β

e−j2παlτlfc .

Stacking r
(β)
n for n = [0, · · · , K − 1] into a vector r

(β)
T =

[r
(β)
0 , · · · , r

(β)
K−1]

T , we attain

r
(β)
T =

L−1∑
l=0

h
(β)
l D

(β)
l FH

αl/βΛlb + w
(β)
T , (4)

=

[
L−1∑
l=0

h
(β)
l D

(β)
l FH

αl/βΛlF1

]
︸ ︷︷ ︸

H
(β)
T

s + w
(β)
T , (5)

where Fα represents a fractional discrete Fourier transform (DFT)
matrix, whose (m, k)th entry can be expressed as

[Fα]m,k =
1√
K

e−j2πα mk
K . (6)

Obviously, F1 reduces to a normal DFT matrix; Further in (5), b =
[b0, · · · , bK−1]

T and s = [s0, · · · , sK−1]
T , which are related to

each other by b = F1s. In addition,

Λl =
√

Kdiag(1, ej2παlλl
1
K , · · · , ej2παlλl

K−1
K ), (7)

with λl = τl
T

being the normalized delay of the lth path, and

D
(β)
l = diag(1, e

j2πω
αl−1

β
1
K , · · · , e

j2πω
αl−1

β
K−1

K ), (8)

with ω = fc
Δf

being the normalized frequency. Finally, w
(β)
T is

similarly defined as r
(β)
T .

In most of the cases, OFDM channels are equalized in the fre-
quency domain. To this end, the received samples are first trans-
formed into the frequency domain, resulting in

r
(β)
F = F1r

(β)
T = H

(β)
F b + w

(β)
F , (9)

with w
(β)
F = F1w

(β)
T ; H

(β)
F denotes the FD channel matrix

H
(β)
F =

L−1∑
l=0

h
(β)
l H

(β)
F,lΛ

(β)
l (10)

with H
(β)
F,l = F1D

(β)
l FH

αl/β being its lth component, whose

(m, k)th entry is specified as[
H

(β)
F,l

]
m,k

=

K−1∑
n=0

e−j2π mn
K e

j2πω
αl−1

β
n
K e

j2π
αl
β

nk
K

= Kej
(K−1)π

K ((m−k)−(ξl,F1k+ξl,F2))×
sinc(π ((m − k) − (ξl,F1k + ξl,F2)))

sinc( π
K

((m − k) − (ξl,F1k + ξl,F2)))
, (11)

where ξl,F1 = αl−β
β

and ξl,F2 = αl−1
β

ω.

H
(β)
F,l is obviously a full matrix, with the non-zero off-diagonal

entries representing the effect of ICI. In the absence of Doppler, we

have αl ≡ 1 and thus β = 1. Then it follows that
[
H

(β)
F,l

]
m,k

=

δ(m − k), and thus H
(β)
F,l , as well as H

(β)
F , becomes diagonal such

that the system is free of ICI. In another special case where αl ≡
α for l = 0, · · ·L − 1, corresponding to a single-scale scenario
assumed by many underwater communication works such as [3], the
resampling ratio at the receiver should be β = α, and the ICI then
results from a carrier-frequency offset (CFO) determined by ξl,F2.
However the ICI analysis for the MSML channels becomes more
complicated, which we will discuss later on.

Frequency-domain equalization (FDE) can be readily applied
on (9). For instance, a linear minimum mean square error (LMMSE)
equalizer can be derived as

b̂ =
(
H

(β)H

F H
(β)
F + σ2I

)−1

H
(β)H

F r
(β)
F . (12)

In the above, we have assumed that the data symbols are i.i.d with a
unit variance, and the noise is uncorrelated with the data, i.i.d with
variance σ2.

2.2. Time-Domain Channel Equalization

Just as a single-carrier channel can be equalized in the frequency
domain, it is also possible to equalize an OFDM channel in

the time domain. In (5), the TD channel matrix H
(β)
T is in-

troduced. Similar to its FD counterpart, we can rewrite it as

H
(β)
T =

∑L+1
l=0 h

(β)
l D

(β)
l H

(β)
T,l with H

(β)
T,l = FH

αl/βΛlF1 being

its lth component, whose (m, k)th entry is given by[
H

(β)
T,l

]
m,k

=

K−1∑
n=0

e
j2π

αl
β

mn
K ej2παlλl

n
K e−j2π nk

K

= Kej
(K−1)π

K ((k−m)−(ξl,T1m+ξl,T2))×
sinc(π ((k − m) − (ξl,T1m + ξl,T2)))

sinc( π
K

((k − m) − (ξl,T1m + ξl,T2)))
, (13)

where ξl,T1 = αl−β
β

and ξl,T2 = αlλl.
For time-domain equalization (TDE), the estimate of s is first

obtained by means of an LMMSE equalizer

ŝ =
(
H

(β)H

T H
(β)
T + σ2I

)−1

H
(β)H

T r
(β)
T , (14)

after which the data estimate is obtained as b̂ = FH
1 ŝ.

3. TIME- OR FREQUENCY-DOMAIN EQUALIZATION?

As we see from the analysis above, both the FD and TD channel
matrices are generally full, and hence their inversion admits a com-
plexity that is cubic in the number of subcarriers. Recall that in
narrowband OFDM systems, the FD channel matrix will also be full
if the time-variation within one OFDM symbol cannot be neglected.
To lower the equalization complexity in such cases, many works ap-
proximate the channel matrix to be strictly banded [7]. In wideband
systems, we next provide an analysis on the out-of-band interfer-
ence resulting from a banded approximation, which shall determine
which domain leads to a less equalization complexity than the other
domain to achieve the same performance.

3.1. Out-of-Band Interference Analysis

Let us begin with the FD channel matrix. It is insightful to first

focus on the structure of its lth component H
(β)
F,l . Although ob-

served by other works e.g. [4], we quantitatively describe in (11)
that most energy of the kth transmitted data symbol bk is shifted via
the lth path to the {k + ΔF,l(k)}th subcarrier with ΔF,l(k) =<
ξl,F1k + ξl,F2 >. It indicates that the frequency shift ΔF,l(k) is
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linearly dependent on the subcarrier index k through ξl,F1, with an
offset ξl,F2. Different from narrowband time-varying systems where
each subcarrier experiences a statistically identical Doppler shift, it
is unique to wideband time-varying systems that the Doppler shift is
linear to the subcarrier index.

The sinc function in (11) also suggests that the signal energy is
mostly concentrated in subcarrier k + ΔF,l(k) and its nearby sub-
carriers, and decays in subcarriers farther away. To appreciate how
fast the signal energy decays, let us introduce BF,l(k) to quantify
the number of subcarriers where most of the energy of bk is located,

which can thus be viewed as the bandwidth of H
(β)
F,l along its kth

column. BF,l(k) is obtained by evaluating the following inequality

BF,l(k) = arg min
B

k+ΔF,l(k)+B∑
m=k+ΔF,l(k)−B

∣∣∣[H(β)
F,l ]m,k

∣∣∣2 > γ

K−1∑
m=0

∣∣∣[H(β)
F,l ]m,k

∣∣∣2

⇒ arg min
B

k+ΔF,l(k)+B∑
m=k+ΔF,l(k)−B

∣∣∣∣∣ sinc(π
(
(m − k) − (ξl,F1k + ξl,F2)

)
)

sinc( π
K

(
(m − k) − (ξl,F1k + ξl,F2)

)
)

∣∣∣∣∣
2

> γ

K−1∑
m=0

∣∣∣∣∣ sinc(π
(
(m − k) − (ξl,F1k + ξl,F2)

)
)

sinc( π
K

(
(m − k) − (ξl,F1k + ξl,F2)

)
)

∣∣∣∣∣
2

, (15)

where γ is a positive number no larger than 1. In Fig. 1, the relation-
ship between max kBF,l(k) and γ is plotted, where it is clear that
most of the signal energy of bk is captured within a limited band-
width. Notably, this bandwidth is almost independent of ξl,F1 and
ξl,F2 as suggested by Fig. 1.

Since H
(β)
F,l is roughly banded, it is therefore reasonable to ap-

proximate H
(β)
F , which is a weighted sum of H

(β)
F,l , also as banded.

As an example, we plot in Fig. 2 the structure of H
(β)
F where we

assume that there are in total two paths. Obviously, the bandwidth

of H
(β)
F at the kth column, denoted as BF (k), is

BF (k) =
max

l
(k + ΔF,l(k) + BF,l(k)) − min

l
(k + ΔF,l(k) − BF,l(k))

≈ max
l

(ΔF,l(k)) − min
l

(ΔF,l(k)) + 2max
l

(BF,l(k)) ,

We refer the reader to Fig. 2 for the physical meaning of the
notations. It is important to underscore that since the band-
width BF (k) is dependent on the subcarrier index k, the bound-
aries of the band are not parallel to each other as in banding
approaches for narrowband cases. With the band approxima-

tion, the equalizer will not employ H
(β)
F , but the banded version

H̃
(β)
F = PF �H

(β)
F , where the (m, k)th entry of PF is equal to 1 if

min
l

(k + ΔF,l(k) − BF,l(k)) ≤ m ≤ max
l

(k + ΔF,l(k) + BF,l(k))

or 0 otherwise. Such an equalizer experiences a signal-to-interference
ratio (SIR) given by

SIR =
‖H̃(β)

F ‖2

‖H(β)
F − H̃

(β)
F ‖2

. (16)

The above analysis can also be applied to the TD channel matrix

H
(β)
F in an analogous manner. The bandwidth of H

(β)
F is defined

vertically, related with the span of the row index, m, in (15), while

the bandwidth of H
(β)
T will be defined horizontally, related with the

span of the column index, k. We illustrate them in Fig. 3. More
specifically, we define ΔT,l(m) =< ξl,T1m + ξl,T2 >, and intro-
duce BT,l(m) similarly as BF,l(k) is introduced in (15). Finally, the

bandwidth of H
(β)
T at the mth row, denoted as BT (m), is given by

BT (m) = max
l

(ΔT,l(m)) − min
l

(ΔT,l(m)) + 2max
l

(BT,l(m)),

based on which we are able to obtain a banded approximation of

H
(β)
T as H̃

(β)
T = PT � H

(β)
T with PT similarly defined as PF .
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Fig. 1. Bandwidth of H
(β)
F,l or H

(β)
T,l

Fig. 2. Illustration of H
(β)
F correlated with paths

3.2. Criterion to choose FDE or TDE

With the LMMSE equalizer given in (12), it is clear that the cost
of equalization in the frequency domain will be upper-bounded by
O(KB2

F ) with BF = max
k

BF (k). Likewise, the cost of equal-

ization in the time domain will be upper-bounded by O(KB2
T )

with BT = max
m

BT (m). To minimize the complexity, we use

therefore the ratio BF /BT as the criterion to choose in which
domain the equalization will be realized. However, the evalua-
tion of BF and BT is a bit cumbersome, and lacks the insight of
the channel physics. In practice, it is reasonable to assume that
max

l,k
(BF,l(k)) ≈ max

l,m
(BT,l(m)) = C [see Fig. 1], and conse-

quently, we consider the proportion

ε =
BF − 2C

BT − 2C
=

max
k

(
max

l
(ΔF,l(k)) − min

l
(ΔF,l(k))

)
max

m

(
max

l
(ΔT,l(m)) − min

l
(ΔT,l(m))

) .

For a realistic scale αl, we are usually allowed to assume that

|αl − β|
β

	 1

K − 1
, (17)

Fig. 3. Structure of Approximated Matrix for FD and TD Channel
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from which it follows that max
l,k

(|ξl,F1|k) 	 1 and max
l,m

(|ξl,T1|m) 	
1. With these assumptions, ε can further be rewritten as

ε =

〈
(max

l
(αl) − 1)ω

β

〉
−

〈
(min

l
(αl) − 1)ω

β

〉
〈
max

l
(αlλl)

〉
−

〈
min

l
(αlλl)

〉 , (18)

where ω = fc
Δf

is introduced in (8) as the normalized frequency,

and λl = τl
T

is introduced in (7) as the normalized delay of the
lth path. (18) suggests that if the maximum difference between the
Doppler shifts of each path (i.e., αl−1

β
ω) is smaller than the max-

imum difference between the time shifts of each path (i.e., αlλl),
then the equalization should be realized in the frequency domain,
otherwise, a time-domain approach will be more appealing in terms
of the complexity. Although a similar conclusion has been made for
narrowband systems [5], its extension to wideband systems is not
straightforward as shown above.

4. COMPUTER SIMULATIONS AND DISCUSSIONS

We consider two different types of wideband channels: 1) ultrawide-
band (UWB) radio channels, and 2) underwater acoustic channels
(UAC). The channel parameters for these two cases are summarized
in Table 1, except the path gain hl, which is modeled in the simula-
tion as a zero-mean i.i.d. variable whose variance σ2

l equals c · e|λl|

with c being a normalization constant such that
∑

l σ2
l = 1.

Table 1. Channel parameters
Case 1: ε > 1 Case 2: ε < 1

K = 128, ω = 10000, β = 1 K = 128, ω = 400, β = 1
l αl λl l αl λl

0 1.0000 0.00 0 1.0000 0.00
1 1.0011 1.02 1 1.0011 5.02
2 1.0014 2.00 2 1.0014 7.00
3 0.9989 3.01 3 0.9989 10.01

We first evaluate (16) and plot the curve of the SIR versus BF

(BT ) in Fig. 4. It can be seen that for the same SIR, it is cheaper
to equalize the UWB channel in the time domain where the Doppler
spread is typically larger than the delay spread. In comparison, it is
cheaper to equalize the UAC channel in the frequency domain since
the UAC channel has usually a very long delay spread.

Next, we compare the equalization performance. QPSK sym-
bols are transmitted. The receiver, which is assumed to have perfect
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Fig. 5. BER vs. SNR for two cases

channel knowledge, utilizes the LMMSE equalizers given in (12)
and (14). Note that for comparison, we use the banded approxima-

tion H̃
(β)
F (H̃

(β)
T ) in the equalizer for different bandwidths.

The left subplot of Fig. 5 plots the bit error rate (BER) perfor-
mance as a function of signal-to-noise ratio (SNR) for the UWB
channel in Case 1. It can be seen that the TD equalizer is compu-
tationally more attractive than the FD equalizer. For instance, the

performance of the TD equalizer based on H̃
(β)
T with a bandwidth

BT = 18 achieves a similar BER as the FD equalizer based on H̃
(β)
F

with a bandwidth BF = 40. The BER performance for the UAC
channel in Case 2 is compared in the right subplot of Fig. 5, where it
is evident that the FD equalizer is more appealing in this case. These
facts align with the observations made in Fig. 4.

5. CONCLUSIONS

Equalization of wideband channels in OFDM is discussed, where
we use a multi-scale, multi-lag channel model. The resulting time-
domain and frequency-domain channel matrices are shown to be ap-
proximately banded. We propose a criterion to determine in which
domain the channel matrix is more banded than the other domain.
This property is utilized to minimize the equalization complexity.
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