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ABSTRACT
Power constrained on-off keying communications systems are
investigated in the presence of stochastic signaling and de-
tector randomization. The joint optimal design of decision
rules, stochastic signals, and detector randomization factors is
performed. It is shown that the solution to the most generic
optimization problem that employs both stochastic signaling
and detector randomization can be obtained as the randomiza-
tion among no more than three Neyman-Pearson (NP) deci-
sion rules corresponding to three deterministic signal vectors.
Numerical examples are also presented.

Index Terms– Detection, stochastic signaling, detector
randomization, Neyman-Pearson, on-off keying.

1. INTRODUCTION AND MOTIVATION
Optimal signaling and detector design have been studied
in elaborate detail under various frameworks (e.g., Bayes,
minimax, Neyman-Pearson) for communications systems
corrupted by additive white Gaussian noise (AWGN) [1, 2].
Recently, there has been a renewed interest in this subject
to improve the performance of communication systems op-
erating under various system constraints. In [3], convexity
properties of error probability are studied in the optimal de-
tection of binary-valued scalar signals corrupted by additive
noise under an average power constraint. It is shown that the
average probability of error is a nonincreasing convex func-
tion of the signal power when the channel has a continuously
differentiable unimodal noise probability density function
(PDF) with finite variance. This discussion is extended from
binary modulations to arbitrary signal constellations in [4] by
concentrating on the maximum likelihood (ML) detection for
AWGN channels. It is proven that an average power-limited
transmitter cannot improve its error performance via time-
sharing between different power levels in low dimensions
(1-D and 2-D) as opposed to the situation for some M -D
constellations, M ≥ 3.

Despite its analytical tractability, the actual noise at the re-
ceiver is rarely Gaussian distributed due to effects such as non-
linear filtering, intersymbol and multiuser interference [5]. As
a result, a comparable amount of effort has been devoted to an-
alyze performance improvements due to randomized signaling
and detection techniques over non-Gaussian channels. More
specifically, two methods have proven effective in reducing
the average probability of error for power constrained com-
munications systems over additive noise channels with mul-
timodal PDFs: either the signals for transmitted symbols are
modeled as random variables instead of deterministic quan-
tities [6, 7] (so called stochastic signaling), or different de-
tectors are employed at the receiver with certain probabilities
corresponding to antipodal signals [8] (so called detector ran-
domization). Recently, the authors have studied optimal re-
ceiver design for a vector-valued M -ary communications sys-
tem in which both detector randomization and stochastic sig-
naling can be performed [9]. It is proven that stochastic signal-
ing without detector randomization cannot achieve a smaller
average probability of error than detector randomization with
deterministic signaling for the same average power constraint
and noise statistics. Then, it is shown that the optimal receiver

design results in a randomization between at most two maxi-
mum a-posteriori probability (MAP) detectors corresponding
to two deterministic signal vectors.

Until recently, the scope of the benefits obtained from
stochastic signaling and detector randomization approaches
were limited to the average probability of error criterion.
However, in some cases the probabilities of detection and
false alarm become the main performance metrics as in the
Neyman-Pearson (NP) approach. In [10], a power constrained
on-off keying communications system is considered in the
NP framework, and the problem of designing the optimal
stochastic signals is addressed using a single detector in order
to maximize the probability of detection without violating the
constraints on the probability of false alarm and the average
signal power. Based on a theoretical analysis, it is shown that
the optimal solution can be obtained by employing random-
ization between at most two signal vectors for the on-signal
(symbol 1) and using the corresponding NP-type likelihood
ratio test (LRT) at the receiver.

In this study, we investigate power constrained on-off key-
ing communications systems in the presence of multiple de-
tectors at the receiver. Specifically, we consider the joint op-
timal design of decision rules, stochastic signals, and detector
randomization factors. Adopting a similar analysis strategy to
[9], it is proven that the solution to the most generic optimiza-
tion problem (i.e., employing both stochastic signaling and
detector randomization) can be obtained as the randomization
among no more than three NP decision rules corresponding
to three deterministic signal vectors. As a result, the opti-
mal parameters can be computed over a significantly reduced
set instead of an infinite space of functions using global opti-
mization techniques. Numerical simulations are conducted to
corroborate our theoretical results.

2. DETECTOR RANDOMIZATION AND
STOCHASTIC SIGNALING

We consider an average power constrained on-off keying com-
munications system operating over an additive noise channel.
The receiver can randomize among at most K different de-
tectors (decision rules) in any manner to improve the average
detection performance, as shown in Fig. 1. At any given time,
only a single detector is employed at the receiver to conclude
the presence/absence of a signal level embedded in noise. Via
a communications protocol, the transmitter is informed of the
detector currently active at the receiver. As pointed out in [10],
in the absence of detector randomization, employing stochas-
tic signaling; that is, modeling the on-signal as a random vari-
able instead of assuming a constant level, can help improve the
detection performance without violating the constraints on the
false alarm probability and average signal power.

Given an N -dimensional observation vector, the receiver
has to decide between two hypotheses H0 or H1 specified as

H0 : Y = N , H1 : Y = S(i) + N , i ∈ {1, . . . , K} (1)

where Y is the noisy observation vector, S(i) represents the
transmitted signal vector for the on-signal destined for detec-

tor i, and N is the noise component that is independent of S(i).
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Fig. 1. On-off keying communications system model for joint
stochastic signaling and detector randomization.

Furthermore, S(i) is modeled as a random vector to facilitate
stochastic signaling [10]. It should be emphasized that the
noise component in (1) is not necessarily Gaussian distributed.
Due to interference, such as inter-symbol and multiple-access
interference, the effective noise in the channel can deviate sig-
nificantly from the Gaussian case [5].

Let vi denote the randomization factor for detector i,
where

∑K
i=1 vi = 1 and vi ≥ 0 for i = 1, . . . , K. The two

probabilities of interest in the NP framework, the average
probability of detection PD and the average probability of

false alarm PFA, can be calculated as PD =
∑K

i=1 vi P(i)
D

and PFA =
∑K

i=1 vi P(i)
FA . P(i)

D and P(i)
FA represent the de-

tection and false alarm probabilities for detector i, respec-

tively; and are specified by P(i)
D =

∫
RN φ(i)(y) p

(i)
1 (y) dy

and P(i)
FA =

∫
RN φ(i)(y) pN(y) dy, where φ(i) is the decision

rule for detector i, and p
(i)
1 (y) denotes the conditional PDF of

the observation received by detector i under the alternative hy-
pothesis H1. Recalling that signal and noise are independent,

p
(i)
1 (y) =

∫
RN pS(i)(s) pN(y − s) ds = E{pN

(
y − S(i)

)},

where the expectation is taken over the PDF of S(i). Similarly,
under the framework of stochastic signaling and detector ran-
domization, the constraint on the average signal power can be

expressed as [1]:
∑K

i=1 vi E{‖S(i)‖2
2} ≤ A , where A denotes

the average power limit.
For a given detector i and the corresponding signal PDFs,

the probability of detection is maximized under the false alarm
constraint using the NP decision rule [1, 2], which takes the
form of an LRT

φ
(i)
NP(y) =

{
1 , if p

(i)
1 (y) ≥ η(i) pN(y)

0 , if p
(i)
1 (y) < η(i) pN(y)

, (2)

where the decision threshold η(i) ≥ 0 is chosen such that the

probability of false alarm satisfies P(i)
FA =

∫
RN φ

(i)
NP(y)pN(y)dy

= αi for some value αi ∈ (0, 1). Then, the NP rule is
the optimal one among all αi-level decision rules for de-

tector i, i.e., P(i)
D =

∫
RN φ

(i)
NP(y)p(i)

1 (y)dy is maximized
[1, 2]. Therefore, it is not necessary to search over all
decision rules; only the NP decision rule should be de-
termined for each detector and the corresponding average
detection and false alarm probabilities should be consid-
ered [9, 10]. Using the decision region for the NP detec-

tor, Γ(i)
NP(pS(i) , η(i)) = {y ∈ R

N : E{pN(y − S(i))} ≥
η(i) pN(y)}, detection and false alarm probabilities for detec-

tor i can be expressed as P(i)
D,NP =

∫
Γ

(i)
NP

E
{
pN(y−S(i))

}
dy

and P(i)
FA,NP =

∫
Γ

(i)
NP

pN(y) dy.

By adapting stochastic signaling and detector randomiza-
tion into the NP framework, we aim to jointly optimize the
randomization factors, decision thresholds and signal PDFs in
order to maximize the average probability of detection under
the constraints on the average probability of false alarm and
average signal power (Joint optimization can be facilitated via
a feedback mechanism from the receiver to the transmitter,
such as those in cognitive radio (CR) systems). Then, by de-

noting the optimization space as S � {vi, η
(i), pS(i)}K

i=1, the
optimal design problem can be solved from

max
S

K∑
i=1

vi

∫
Γ

(i)
NP

E
{
pN(y − S(i))

}
dy

subject to

K∑
i=1

vi

∫
Γ

(i)
NP

pN(y) dy ≤ α (3)

K∑
i=1

vi E

{∥∥S(i)
∥∥2

2

}
≤ A ,

K∑
i=1

vi = 1 , v � 0

where α ∈ (0, 1) is the average false alarm constraint, v � 0
means that vi ≥ 0 ∀ i ∈ {1, 2, . . . , K}, and expectations are
taken over the signal PDFs pS(i) . Implicit constraints are also
present in (3) due to each pS(i) representing a PDF [9, 10].

A direct evaluation of (3) requires an exhaustive search
over the space of randomization factors, decision thresholds
and signal PDFs, which is inherently a difficult procedure. Let

P†
D denote the maximum average probability of detection ob-

tained from the solution of (3). In the sequel, an upper bound
on this problem with a simpler solution is derived, and then
the achievability of this bound is demonstrated. To that aim,
the following observations are stated first.

Suppose that the decision rule φ̃NP (i.e., threshold η̃) and
the signal PDF p̃S(·) are specified for one of the detectors em-
ployed at the receiver. The corresponding detection probabil-

ity can be written as P̃D =
∫

RN φ̃NP(y) E{pN(y−S)}dy =
E{∫

RN φ̃NP(y) pN(y − S) dy}, where the linearity of the
expectation operator is imposed over the fixed decision rule

φ̃NP. Recall that the expression inside the expectation op-
erator is the probability of detection when the deterministic
signal vector s is used for the transmission of on-symbol over

the additive noise channel and decision rule φ̃NP is employed

at the receiver. Although the detector φ̃NP is in the optimal
form for the signal distribution E{pN(y − S)}, it can be sub-
optimal for each component pN(y − s). By applying the NP
criterion to each signal component pN(y−s) that make up the
received signal distribution for the on-symbol, the probability
of detection can be increased even further without violating
the false alarm constraint. More specifically,

φ̂NP(y, s) =
{

1, if pN(y − s) ≥ η(s) pN(y)
0, if pN(y − s) < η(s) pN(y) (4)

where η(s) ≥ 0 is determined as a function of s from

the false alarm constraint via
∫

RN φ̂NP(y, s)pN(y)dy =∫
RN φ̃NP(y) pN(y) dy. As a result, the decision rule φ̃NP for

the given detector can be replaced with a set of decision rules

φ̂NP indexed by parameter s such that

E

��
RN

φ̂NP(y,S)pN(y − S)dy

�
≥
�

RN

φ̃NP(y)E {pN(y − S)} dy

(5)
is always satisfied while guaranteeing the false alarm con-
straint due to the increased number of optimal NP decision
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rules in the new formulation (in contrast with the limited num-
ber of detectors in the original problem).

In accordance with the terminology in [9, 10], the left side
of the inequality in (5) can be interpreted as a randomiza-
tion among NP detectors corresponding to deterministic sig-
nal vectors, while the right hand side can be understood as
stochastic signaling using a single detector. Hence, assum-
ing the same average power and false alarm constraints, the
average probability of detection obtained by stochastic signal-
ing with PDF p̃S(·) is always smaller than or equal to that of
deterministic signaling and detector randomization according
to the same PDF when optimal NP detectors are employed in
both cases under the same statistics for the additive noise.

Notice that a new decision rule is added for each s
in the support of p̃S(i) to obtain the upper bound for a
given detector i in the previous analysis. This procedure
can be extended safely across multiple detectors by as-
suming that the supports of p̃S(i) , i = 1, 2, . . . , K are
non-overlapping. If there were overlapping supports, then
∃ s̃ ∈ R

N such that p̃S(i)(s̃) 	= 0 and p̃S(j)(s̃) 	= 0 for i 	= j.
After applying the procedure described above, there would
be contributions in the overall average false alarm proba-

bility as ṽip̃S(i)(s̃)
∫

RN φ̂
(i)
NP(y, s̃) pN(y) dy + ṽj p̃S(j)(s̃)∫

RN φ̂
(j)
NP(y, s̃)pN(y) dy � αij . Similarly, the contribu-

tions from these terms to the average detection probabil-

ity would be ṽip̃S(i)(s̃)
∫

RN φ̂
(i)
NP(y, s̃) pN(y − s̃) dy +

ṽj p̃S(j)(s̃)
∫

RN φ̂
(j)
NP(y, s̃) pN(y − s̃) dy. Then, the contri-

butions from detectors i and j can be replaced in the re-
spective expressions with a single term corresponding to the

NP decision rule φ̂NP(y, s̃) with the false alarm probability
αij/(ṽip̃S(i)(s̃) + ṽj p̃S(j)(s̃)) and the corresponding weight
coefficient would become ṽip̃S(i)(s̃) + ṽj p̃S(j)(s̃). Since the
receiver operating characteristics (ROC) curve corresponding
to an NP decision rule is concave for any given s̃, the resulting
system would have an even higher average detection probabil-
ity while possessing the same average false alarm probability
and average signal power as the former case [2].

In the light of these observations and the inequality in (5),
an upper bound on the problem in (3) can be obtained as

max
pS,η

E {D(S, η)}
subject to E {F (S, η)} ≤ α and E

{‖S‖2
2

} ≤ A (6)

with D(S, η) �
∫
Γ(S,η)

pN(y − S) dy , and F (S, η) �∫
Γ(S,η)

pN(y) dy, where Γ(s, η) =
{
y ∈ R

N : pN(y − s) ≥
η pN(y)} and the expectations are taken with respect to the
joint PDF pS,η(s, η) by treating both S and η as random vari-
ables. Let P�

D denote the maximum average probability of
detection obtained as the solution to the optimization problem

in (6). Since this is an upper bound, P�
D ≥ P†

D is always
satisfied.

Optimization problems in the form of (6) have been stud-
ied in various contexts [6, 9, 10]. Assuming that D(s, η) and
F (s, η) are continuous functions defined on a compact subset

of R
N+1, then an optimal solution to (6) can be expressed by

a convex combination among at most three components due

to Carathéodory’s theorem [11]; that is, popt
S,η(s, η) = λ1 δ(s−

s1, η−η1)+λ2 δ(s−s2, η−η2)+λ3 δ(s−s3, η−η3). Moti-
vated by this observation, we state the following proposition.

Proposition 1: The solution of the optimization problem
in (3) can be obtained as follows:

max
{λi, si, ηi}3

i=1

3∑
i=1

λi

∫
Γ(si, ηi)

pN(y − si) dy

subject to

3∑
i=1

λi

∫
Γ(si, ηi)

pN(y) dy ≤ α

3∑
i=1

λi ‖si‖2
2 ≤ A ,

3∑
i=1

λi = 1

λi ≥ 0 and ηi ≥ 0 ∀i ∈ {1, 2, 3} (7)

where Γ(si, ηi) =
{
y ∈ R

N : pN(y − si) ≥ ηi pN(y)
}

∀ i ∈ {1, 2, 3}, and α ∈ (0, 1) .
Proof: The optimization problem in (7) is obtained by

substituting the form of the optimal PDF popt
S,η(s, η) into the

optimization problem in (6). Now, we show that the opti-
mization problems in (3) and (7) result in the same maximum
value. Since (6) and equivalently (7), provide an upper bound

on (3), P†
D ≤ P�

D. Next, consider the optimization problem in
(3) when K = 3 detectors are used and deterministic signal-
ing is employed for each detector, that is, pS(i)(s) = δ(s−si),
i = 1, 2, 3. In that case, (3) reduces to the optimization prob-
lem in (7). As a result, the maximum value of the objective
function in (3) should be larger than or equal to that of (7);

namely, P†
D ≥ P�

D. Therefore, P†
D = P�

D must be satisfied. �
A few conclusions can be drawn from Proposition 1.

Firstly, when multiple detectors are available for randomiza-
tion (K ≥ 3), it is sufficient to employ detector randomization
among three deterministic signal vectors; i.e., there is no need
to employ stochastic signaling to achieve the optimal solu-
tion. Secondly, the solution of (3) can be obtained by optimiz-
ing over a significantly reduced optimization space via (7).
Despite the simplification, the solution still requires global
optimization algorithms such as particle swarm optimization
(PSO), or convex relaxation techniques can be utilized to ob-
tain an approximate solution [6]. In this paper, MATLAB’s
multistart method is employed with 500 random start points
and sqp algorithm is used together with the local solver fmin-
con. The extrema returned by the method are cross-checked
with the results from the patternsearch algorithm.

3. SIMULATION RESULTS AND CONCLUSIONS
In this section, the numerical example presented in [10] is
revisited to compare the detection performance of the opti-
mal solution obtained in the previous section against various
signalling techniques studied in [10]. It is assumed that the
receiver is capable of randomizing among multiple detectors
(K ≥ 3). The noise N in (1) is assumed to have a symmet-
ric Gaussian mixture distribution with equal variances as fol-

lows: pN (n) =
∑L

i=1 li exp{−(n − μi)2/(2σ2)}/(
√

2π σ) ,
where l = [0.1492 0.1088 0.2420 0.2420 0.1088 0.1492], and
μ = [−1.211 − 0.755 − 0.3 0.3 0.755 1.211]. The average
signal power and average false alarm constraints are selected
as A = 1 and α = 0.05, respectively. The following signaling
schemes, which employ a single detector at the receiver, were
already discussed in [10]:

Conventional Solution: Lacking any information about
the noise PDF, the transmitter employs deterministic signal-

ing at the maximum permitted power level (S =
√

A). The
receiver is fully informed of the channel statistics, and designs
the corresponding optimal NP decision rule [10, Eq. 11].

Optimal−Deterministic: This scheme searches for the
optimal deterministic signal level and the corresponding
NP decision rule to maximize the detection probability [10,
Eq. 12].
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Fig. 2. Probability of detection PD versus σ for different ap-
proaches when A = 1 and α = 0.05.

Optimal−Stochastic: The optimal stochastic signal and
the corresponding NP detector are designed jointly from [10,
Eq. 9]. The optimal signal for the on-symbol consists of a
randomization between at most two different signal vectors.

Also, a worst case scenario is considered where we as-
sume that the receiver has a limited capability in the sense
that it can measure only the mean and variance of the channel
noise instead of a complete statistical knowledge of the noise.

Gaussian Solution: The transmitter employs signaling

at the maximum power level (S =
√

A), and the receiver
uses the corresponding NP detector assuming that the noise
present in the channel is Gaussian distributed. Specifically,

the α-level NP test at the receiver is given by φ̃NP(y) = 1
if y ≥ σ̂Q−1(α) and φ̃NP(y) = 0 otherwise, where σ̂2 =
σ2 +

∑L
i=1 li μ2

i is the average power of the zero-mean chan-

nel noise, and Q(x) = (
∫ ∞

x
e−t2/2 dt)/

√
2π is the tail prob-

ability of the standard normal distribution.
Finally, the following scheme is considered as the overall

optimal solution when detector randomization is allowed at
the receiver as well:

Optimal Detector Randomization with Deterministic
Signaling: This case refers to the solution of the most generic
optimization problem in (3), which can be obtained from (7)
as studied in the previous section.

In Fig. 2, the detection probabilities of the schemes de-
scribed above are plotted versus σ ∈ {0.01 : 0.005 : 0.30}.
From the figure, it is observed that the Gaussian solution has
the worst performance as expected since neither the signaling
scheme nor the detector is optimized according to the multi-
modal channel noise PDF. Respectively, the conventional so-
lution presents poor performance as well since no optimiza-
tion is performed for the signaling scheme employed at the
transmitter even though the detector is optimized by taking
into account the actual noise PDF. Optimizing deterministic
signal levels improves over the performance of the conven-
tional solution for 0.01 ≤ σ ≤ 0.115, as observed from
the Optimal–Deterministic curve. Further performance im-
provements are obtained when randomization is performed
between two signal levels instead of a deterministic signal
(see Optimal–Stochastic for 0.04 ≤ σ ≤ 0.20). However,
the highest detection performance is achieved by the solu-
tion of the most generic joint optimization problem given in
(7), which performs randomization among NP detectors cor-
responding to three or fewer deterministic signal values for
the on-symbol (see Optimal–Detector Randomization). For

Detector I Detector II Detector III
σ λ1 S1 η1 λ2 S2 η2 λ3 S3 η3

0.010 0.609 1.216 2.556 0.389 0.201 3.433 0.002 0.169 1.931
0.050 0.609 1.267 0.021 0.391 0.237 0.328 0 N/A N/A
0.075 0.617 1.258 2.511 0.383 0.251 1.274 0 N/A N/A
0.100 0.665 1.211 3.380 0.335 0.265 3.014 0 N/A N/A
0.125 0.639 1.228 2.972 0.218 0.319 3.254 0.143 0.315 2.879
0.150 0.551 1.212 2.362 0.449 0.651 2.226 0 N/A N/A
0.175 0.686 1.153 1.993 0.314 0.530 2.552 0 N/A N/A
0.200 0.724 1.101 1.863 0.247 0.594 2.644 0.029 1.118 1.194
0.250 0.979 1.007 1.917 0.021 0.636 3.482 0 N/A N/A
0.300 0.751 1.005 2.033 0.249 0.984 2.190 0 N/A N/A

Table 1. Optimal parameters for Detector Randomization

example, at σ = 0.1, a detection probability of 0.671 can be
achieved by transmitting s1 = 1.211 with probability λ1 =
0.665 and s2 = 0.265 with probability λ2 = 0.335, and em-
ploying the corresponding NP detectors with false alarm prob-
abilities α1 = 0.0368 and α2 = 0.0763 (see Table 1 for more
results). On the other hand, the optimal stochastic solution re-
sults in a randomization between s1 = 1.246 and s2 = 0.273
with λ = 0.626, achieving a detection probability of 0.645
using a single detector [10, Table 1]. It is seen in Table 1
that randomization between two NP decision rules achieves
the highest detection performance for most values of σ. Since
Proposition 1 states that at most three detectors are sufficient
to obtain the optimal solution via randomization, one can find
examples where optimal performance can be achieved using
fewer detectors as in this case. On the contrary, there may be
cases where randomization among three detectors becomes a
necessity for optimality (e.g., some multivariate noise PDFs,
N > 1). It is also observed that all signaling schemes get
closer for large values of σ due to increasing overlap among
mixture components which renders randomized approaches
ineffective over the conventional ones.
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