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ABSTRACT
This paper considers algorithms for optimal transmission over wireless
multiuser channels where the transmitter has access to imperfect chan-
nel state information (CSI). We focus on downlink orthogonal frequency
division multiple access and multiuser uplink random access. In both
cases, frequency assignment, transmitted power, and coding mode are
adapted to imperfect CSI in order to maximize expected transmission
rate subject to average power constraints. Determination of optimal so-
lutions is a non-convex stochastic optimization problem with infinitely
many variables. Exploiting its property of null duality gap, we show
that optimal solutions are determined by optimal dual variables. This af-
fords considerable simplification because the dual optimization problem
is convex and finite-dimensional. Iterative algorithms that find the opti-
mal operating point based on imperfect CSI without having access to the
channels’ probability distributions are further developed.

1. INTRODUCTION

We develop algorithms to handle imperfect channel state information
(CSI) in wireless multiuser channels. To exploit favorable channel con-
ditions, transmitters adapt power and coding mode to the measured CSI.
Due to the inaccuracy of CSI, channel outages occur when the rate se-
lected turns out too aggressive for the actual channel realization [1].
From a practical perspective, it is recognized that to mitigate the negative
effect of capacity outages caused by imperfect CSI, a rate backoff func-
tion is needed in addition to power control; see e.g. [2]. Ideally, power
allocation and rate backoff should be jointly optimized but this results in
a nonconvex problem that is difficult to solve. By imposing additional
restrictions, the problem can be simplified to more tractable formula-
tions. E.g., when power is fixed and only rate adaptation is considered
the problem is reduced to the determination of the optimal backoff func-
tion; e.g. [3]. A second possibility is to fix a target outage probability and
separate the optimization into the determination of a backoff function for
target outage, followed by optimal power allocation [4]. A third possible
restriction is to assume that the backoff function takes a certain paramet-
ric form and proceed to optimize the corresponding parameters, e.g. [2].
While yielding tractable formulations, the resultant transmission rates
are not optimal. This paper focuses on downlink orthogonal frequency
division multiple access (OFDMA) (Section 2) and uplink random ac-
cess (RA) (Section 3) to develop algorithms that finds optimal operating
points without imposing any additional simplifying assumptions. Nu-
merical results are presented in Section 4.

2. ORTHOGONAL FREQUENCY DIVISION
MULTIPLE ACCESS

Consider an orthogonal frequency division multiple access (OFDMA)
channel where a common access point (AP) with an average power bud-
get P0 transmits to N terminals {Tn}Nn=1 using a group of orthogonal
frequencies F . Time is slotted and indexed by t. The time-varying chan-
nel gain between the AP and Tn for all frequencies f ∈ F is modeled as
block fading and denoted by γf

n(t). In each time slot the AP observes im-
perfect channel gains denoted by γ̂(t) := {γ̂f

n(t) : n ∈ N , f ∈ F}. The
accuracy of γ̂f

n(t) is characterized through a known conditional proba-
bility distribution m(γf

n|γ̂f
n) that determines the probability of the actual
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channel being γf
n when the observation is γ̂f

n . Although instantaneous
imperfect CSI γ̂(t) is observed, its distribution is assumed unknown.

Based on γ̂(t), the AP decides on frequency assignment af
n(t) :=

Af
n(γ̂(t)) ∈ {0, 1} and power allocation pfn(t) := P f

n (γ̂(t)) ∈
[0, Pmax]. If af

n(t) = 1, it transmits to Tn using frequency f . As-
sume a given frequency cannot be used by more than one terminal
in a time slot, we require

∑N
n=1 a

f
n(t) ≤ 1. Defining the vector

Af (γ̂) := [Af
1 (γ̂), · · · , Af

n(γ̂)]
T this frequency exclusion constraint is

written as

Af (γ̂) ∈ A :=
{
a = [a1, · · · , aN ]T : an ∈ {0, 1},aT1 ≤ 1

}
. (1)

With transmission power pfn(t) the maximum amount of information that
can be delivered to Tn on frequency f is given by the capacity function
C(pfn(t), γ

f
n(t)) which is a nonnegative and nondecreasing function of

the signal to noise ratio (SNR) pfn(t)γ
f
n(t)/N0, where N0 is the chan-

nel noise. However, γf
n(t) is the actual channel gain and is unknown

to the AP. If the AP chooses a rate based on the imperfect CSI, i.e.
C(pfn(t), γ̂

f
n(t)), a channel outage will occur when this rate exceeds the

maximum rate the channel can afford - i.e. when C(pfn(t), γ̂
f
n(t)) >

C(pfn(t), γ
f
n(t)) or simply γ̂f

n(t) > γf
n(t). To reduce the negative effect

of channel outage, the AP employs channel backoff functions bfn(t) :=
Bf

n(γ̂(t)) and the communication proceeds at rate C(pfn(t), b
f
n(t)). As

a result, the information delivered to Tn at time t over all frequencies is

rn(t) =
∑
f∈F

af
n(u)C

(
pfn(u), b

f
n(u)

)
I

{
bfn(u) ≤ γf

n(u)
}
, (2)

where I{·} is the indicator function. Upon defining M
γ
f
n|γ̂f

n
(·) as the

complementary cumulative distribution function (ccdf) of γf
n given γ̂f

n ,
we can express the ergodic rate from the AP to Tn as [5]

rn = Eγ̂

[∑
f∈F

Af
n(γ̂)C

(
P f
n (γ̂), B

f
n(γ̂)

)
M

γ
f
n|γ̂f

n

(
Bf

n(γ̂)
)]

:= Eγ̂

[∑
f∈F

Af
n(γ̂(t))R

f
n(γ̂(t))

]
, (3)

where we defined Rf
n(γ̂) := C

(
P f
n (γ̂), B

f
n(γ̂)

)
M

γ
f
n|γ̂f

n

(
Bf

n(γ̂)
)

to

denote the rate that terminal n expects to obtain in frequency f when the
channel estimate is γ̂. By expected rate here we refer to the conditional
expectation with respect to γ given γ̂. Contrast Rf

n(γ̂) with the rate rn
in (3) that also includes an expectation with respect to γ̂.

To evaluate performance of the system, assign utility functions
Un(rn) to ergodic rate rn. The goal is then to design an algorithm
that finds optimal frequency assignment, power allocation, and channel
backoff functions such that the sum utility is maximized, i.e.,

Pb = max

N∑
n=1

Un(rn) (4)

s.t. rn ≤ Eγ̂

[∑
f∈F

Af
n(γ̂)R

f
n(γ̂)

]
, P0 ≥ Eγ̂

[ N∑
n=1

∑
f∈F

Af
n(γ̂)P

f
n (γ̂)

]
,

Af (γ̂) ∈ A, P f
n (γ̂) ∈ [0, Pmax], Bf

n(γ̂) ≥ 0,

where we relaxed the first equality constraint to inequality which can be
done without loss of optimality. The second inequality reflects the AP’s
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average power budget. Solving problem (4) presents several challenges:
1) infinite dimensionality due to the optimization variables being func-
tions; 2) nonconvexity due to the presence of nonconvex channel capacity
function; 3) channel pdfs are unknown; 4) presence of binary constraints
on the variables variables Af

n(γ̂). As we shall show in the next section,
working in the dual domain resolves these issues.

2.1. Optimal solution

Despite being infinite dimensional and nonconvex, problem (4) has null
duality gap [6]. Therefore, we can work on its dual problem which is
finite dimensional and convex without loss of optimality. To do so, intro-
duce multipliers λn and μ associated with the constraints in (4), define
Λ := {λn, μ}, P(γ̂) :=

{
Af

n(γ̂), P
f
n (γ̂), B

f
n(γ̂)

}
, x := {rn}, and

write the Lagrangian as

L(P(γ̂),x,Λ) =

N∑
n=1

∑
f∈F

Eγ̂

[
Af

n(γ̂)
[
λnR

f
n(γ̂)− μP f

n (γ̂)
]]

+

N∑
n=1

[Un(rn)− λnrn] + μP0, (5)

where we reordered and grouped terms by primal variables in the second
equality. The dual function and the dual problem are then given by

Db = min
λn≥0,μ≥0

g(λn, μ) = min
λn≥0,μ≥0

max
P(γ̂),x

L(P(γ̂),x,Λ). (6)

By leveraging the property of null duality gap, i.e., Pb = Db, we can
characterize the optimal solution of the primal problem using the optimal
solution of the dual problem, as shown in the following theorem:

Theorem 1 The optimal frequency assignment function Af∗
n (γ̂), chan-

nel backoff function Bf∗
n (γ̂) and power allocation function P f∗

n (γ̂) for
solving problem (4) are determined by the optimal variables λ∗

n and μ∗ of
the dual problem (6). In particular, for a given frequency f ∈ F we de-
fine Rf∗

n (γ̂) = C
(
P f∗
n (γ̂), Bf∗

n (γ̂)
)
M

γ
f
n|γ̂f

n

(
Bf∗

n (γ̂)
)

and compute

{
P f∗
n (γ̂), Bf∗

n (γ̂)
}
∈ argmax
p∈[0,Pmax],b≥0

λ∗
nC (p, b)M

γ
f
n|γ̂f

n
(b)− μ∗p, (7)

nf = argmax
n

λ∗
nR

f∗
n (γ̂)− μ∗P f∗

n (γ̂), (8)

and set Af∗
n (γ̂) = 0 for all n �= nf . For n = nf , we set Af∗

n (γ̂) = 1 if
λ∗
nR

f∗
n (γ̂)− μ∗P f∗

n (γ̂) > 0.

Proof: See [5]. �
The maximization in (7) is a one dimensional problem for a given ter-

minal n, on a given frequency f , and for given channel estimate γ̂. This
problem is easy to solve even if the maximand is not concave. Compar-
ing this simplicity to the primal problem (4) which contains 3×N ×|F|
function variables. Further note that Theorem 1 indicates that the optimal
solution is opportunistic because frequency f is used only when at least
one terminal’s channel on this frequency is above a threshold.

2.2. Online learning algorithm

For cases when channel pdf of γ̂ is unknown, we develop an online learn-
ing algorithm that performs subgradient descent in the dual domain us-
ing instantaneous channel observations γ̂(t) only. For given multipliers
λn(t) and μ(t), the algorithm first computes primal variables:

rn(t) = argmax
rn∈[0,Cmax]

Un(rn)− λn(t)rn, (9)

{af
n(t), p

f
n(t), b

f
n(t)} =

argmax
a∈A,p∈[0,Pmax],b>0

an

[
λn(t)C (p, b)M

γ
f
n|γ̂f

n(t)
(b)− μ(t)p

]
, (10)

where Cmax in (9) is a constant representing the hard limit for chan-
nel capacity. Follow the logic used for deriving (7)-(8) and define
Rf

n(t) = C
(
pfn(t), b

f
n(t)

)
M

γ
f
n|γ̂f

n(t)

(
bfn(t)

)
, the maximization in (10)

can be further simplified to computing

{pfn(t), bfn(t)} = argmax
p∈[0,Pmax],b≥0

λn(t)C (p, b)M
γ
f
n|γ̂f

n(t)
(b)− μ(t)p, (11)

nf (t) = argmax
n

λn(t)R
f
n(t)− μ(t)pfn(t), (12)

and setting af
n(t) = 0 for n �= nf (t) and af

n(t) = 1 for n = nf (t) if
λn(t)R

f
n(t)−μ(t)pfn(t) > 0. By evaluating the instantaneous constraint

violations, the algorithm completes with dual updates

λn(t+ 1) =

[
λn(t)− ε(t)

[∑
f∈F

af
n(t)R

f
n(t)− rn(t)

]]+
, (13)

μ(t+ 1) =

[
μ(t)− ε(t)

[
P0 −

N∑
n=1

∑
f∈F

af
n(t)p

f
n(t)

]]+
, (14)

where step size ε(t) can be either diminishing or constant. With dimin-
ishing step size, λn(t+1) and μ(t) converge to the optimal dual variables
almost surely. With constant step size, convergence is established in an
ergodic sense as we describe in the following property [7].

Property 1 If constant step size ε(t) = ε > 0 is used in (13) and (14),
then the average power constraint is almost surely satisfied

lim
t→∞

1

t

t∑
u=1

[ N∑
n=1

∑
f∈F

af
n(u)p

f
n(u)

]
≤ P0 a.s., (15)

and the ergodic limit of the transmission rates almost surely converges to
a value within κε of optimal,

Pb −
N∑

n=1

Un

(
lim
t→∞

1

t

t∑
u=1

rn(t)

)
≤ κε, (16)

where κ is a constant [7].

3. RANDOM ACCESS

Consider a multiple access channel in which N terminals contend for
communication to a common AP using random access. A set of frequen-
cies F is used for communication and the channel between terminals and
the AP for all tones is modeled as block fading and denoted as γf

n(t). As-
sume each terminal only observes an imperfect version of its local chan-
nel γ̂n :=

{
γ̂f
n(t) : f ∈ F}. Channels for different users are assumed

independent. Based on its local channel, terminals decide frequency
assignment af

n(t) := Af
n(γ̂n) ∈ {0, 1}, power allocations pfn(t) :=

P f
n (γ̂n) ∈ [0, Pmax] and channel backoffs bfn(t) := Bf

n(γ̂n) ≥ 0. We
remark that Af

n(γ̂n), P
f
n (γ̂n) and Bf

n(γ̂n) are functions of local chan-
nel only. Since terminals contend for channel access, transmission of Tn

in a time slot t on frequency f is successful if and only if af
n(t) = 1

and af
m(t) = 0 for all m �= n. If the transmission of Tn is successful,

its transmission rate is determined by C(pfn(t), b
f
n(t)). Therefore, the

instantaneous transmission rate for Tn in time slot t on frequency f is

rfn(t) =C
(
pfn(t), b

f
n(t)

)
I

{
bfn(t) ≤ γ̂f

n(t)
}

· af
n(t)

N∏
m=1,m �=n

[
1− af

m(t)
]
, (17)

and the ergodic rate is given by

rfn = Eγ̂

[
Rf

n(γ̂n)A
f
n(γ̂n)

N∏
m=1,m �=n

[
1−Af

m (γ̂m)
] ]

, (18)
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where we used Rf
n(γ̂n) = C

(
P f
n (γ̂n) , B

f
n (γ̂n)

)
M

γ
f
n|γ̂f

n

(
Bf

n(γ̂n)
)

as in (3), which in this case represents the average transmission rate for
terminal n on frequency f if there is no collision. An important ob-
servation here is that since terminals are required to make channel ac-
cess and power control decisions independently of each other, varaibles
Af

n(γ̂n), P
f
n (γ̂n), and Bf

n(γ̂n) are independent of Af
m(γ̂m), P f

m(γ̂m),
and Bf

m(γ̂m) for all n �= m. This allows us to rewrite rfn as

rfn = Eγ̂n

[
Rf

n(γ̂n)A
f
n(γ̂n)

] N∏
m=1,m �=n

[
1− Eγ̂m

[
Af

m (γ̂m)
]]

. (19)

The objective is to maximize a weighted proportional fair utility of rfn,

U(r) =

N∑
n=1

∑
f∈F

wf
n log(rfn), (20)

where r :=
{
rfn : n ∈ {1, · · · , N}, f ∈ F} and wf

n is the positive
weight coefficient for Tn using frequency f . Maximizing U(r) yields
solutions that are fair since it prevents users from having very low
transmission rates. With constraints and objective defined, the optimal
random access with imperfect CSI is formulated as the following

Pr = max U(r)

s.t. rfn = Eγ̂n

[
Rf

n(γ̂n)A
f
n(γ̂n)

] N∏
m=1,m �=n

[
1− Eγ̂m

[
Af

m(γ̂m)
]]

,

Eγ̂n

[∑
f∈F

Af
n(γ̂n)P

f
n (γ̂n)

]
≤ P0n,

Af
n(γ̂n) ∈ {0, 1}, P f

n (γ̂n) ∈ [0, Pmax], B
f
n(γ̂n) ≥ 0, (21)

where the second inequality indicates each terminal has an average power
budget of P0n. The formulation in (21) is not amenable for distributed
implementations because the rate constraint involves actions of all termi-
nals. By substituting rfn into U(r), we express the global utility as the

sum of local utilities [5], i.e. U(r) =
∑N

n=1

∑
f∈F Uf

n with

Uf
n := wf

n logEγ̂n

[
Rf

n(γ̂n)A
f
n(γ̂n)

]
+ w̃f

n log
[
1− Eγ̂n

[
Af

n(γ̂n)
]]

where w̃f
n =

∑
m �=n wf

m. To maximize U(r) for the whole system it

suffices to separately maximize
∑

f∈F Uf
n for each terminal n. Intro-

duce variables xf
n = Eγ̂n

[
Af

n(γ̂n)R
f
n(γ̂n)

]
and yf

n = Eγ̂n

[
Af

n(γ̂n)
]
,

we have the following per terminal subproblems

Pr,n = max
∑
f∈F

wf
n log xf

n + w̃f
n log(1− yn) (22)

s.t. xf
n ≤ Eγ̂n

[
Af

n(γ̂n)R
f
n(γ̂n)

]
, yf

n ≥ Eγ̂n

[
Af

n(γ̂n)
]
,

P0n ≥ Eγ̂n

[∑
f∈F

Af
n(γ̂n)P

f
n (γ̂n)

]
,

Af
n(γ̂n) ∈ {0, 1}, P f

n (γ̂n) ∈ [0, Pmax], B
f
n(γ̂n) ≥ 0.

In particular, we have Pr =
∑N

n=1 Pr,n. Therefore, to solve problem
(21) we only need to solve problem (22) for all terminals in a distributed
manner. Next, we characterize the optimal solution for (22) by exploiting
its property of null duality gap and devise adaptive algorithm by using
stochastic subgradient descent as we did in the case of OFDMA.

3.1. Optimal solution

Associate multipliers αf
n, β

f
n and νn with the first three constraints in

problem (22), define Λn := {αf
n, β

f
n, νn : f ∈ F}, Pn(γ̂n) :=

{Af
n(γ̂n), P

f
n (γ̂n), B

f
n(γ̂n) : f ∈ F}, xn = {xf

n, y
f
n : f ∈ F},

and write the Lagrangian as

Ln(Pn(γ̂n),xn,Λn) (23)

=
∑
f∈F

[ [
wf

n log xf
n − αf

nx
f
n

]
+
[
w̃f

n log(1− yf
n) + βf

ny
f
n

]

+ Eγ̂n

[
Af

n(γ̂n)
[
αf
nR

f
n(γ̂n)− βf

n − νnP
f
n (γ̂n)

]]
+ νnP0n

]
,

where we reordered and grouped terms by primal variables. As in the
case of OFDMA, we define the dual function and dual problem as

Dr,n = min
α
f
n≥0,β

f
n≥0,νn≥0

gn(α
f
n, β

f
n, νn)

= min
α
f
n≥0,β

f
n≥0,νn≥0

max
Pn(γ̂n),xn

Ln(Pn(γ̂n),xn,Λn). (24)

By leveraging the property of null duality gap, i.e., Pr,n = Dr,n, we can
characterize the optimal solution of the primal problem using the optimal
solution of the dual problem, as shown in the following theorem.

Theorem 2 The optimal frequency assignment function Af∗
n (γ̂), chan-

nel backoff function Bf∗
n (γ̂) and power allocation function P f∗

n (γ̂)
for solving problem (22) are determined by the optimal variables
αf∗
n , βf∗

n and ν∗
n of the dual problem (24). Define Rf∗

n (γ̂n) =
C
(
P f∗
n (γ̂n), B

f∗
n (γ̂n)

)
M

γ
f
n|γ̂f

n

(
Bf∗

n (γ̂n)
)
, then for a given termi-

nal n and frequency f ∈ F we have{
P f∗
n (γ̂n), B

f∗
n (γ̂n)

}
∈

argmax
p∈[0,Pmax],b≥0

αf∗
n C (p, b)M

γ
f
n|γ̂f

n
(b)− βf∗

n − ν∗
np, (25)

Af∗
n (γ̂n) = H

(
αf∗
n Rf∗

n (γ̂n)− βf∗
n − ν∗

nP
f∗
n (γ̂n))

)
, (26)

where H(a) denotes the Heaviside’s step function, i.e. H(a) = 1 for
a > 0 and H(a) = 0 otherwise.

Proof: See [5]. �
Theorem 2 shows that the determination of power, frequency and

channel backoff can be done distributedly for each terminal and is only
based on terminal’s local channel state. Comparing Theorem 2 with The-
orem 1, we notice two differences: 1) for a given frequency f ∈ F , de-
termination of P f∗

n (·) and Bf∗
n (·) for OFDMA [cf. Thoerem 1] is done

for all n jointly while the ones for RA [cf. Thoerem 2] is done separately
for each n; 2) the frequency assignment variable Af∗

n (γ̂) in OFDMA
must satisfy the constraint Af∗

n (γ̂) ∈ A while the one in RA only needs
to be binary. This is because in the case of RA all terminals act indepen-
dently of each other while in the case of broadcast channels the AP plays
the role of a central decision maker.

3.2. Online learning algorithm

To solve problem (22) without accessing to channel pdf, we implement
stochastic subgradient descent algorithm in the dual domain. The al-
gorithm begins with primal iterations which compute primal variables
according to the following

xf
n(t) = argmax

x≥0
wf

n log x− αf
n(t)x =

wf
n

αf
n(t)

, (27)

yf
n(t) = argmax

0≤y≤1
w̃f

n log(1− y) + βf
n(t)y =

[
1− w̃f

n

βf
n(t)

]+
, (28)

{af
n(t), p

f
n(t), b

f
n(t)} = (29)

argmax
a∈{0,1},p∈[0,Pmax],b≥0

a
[
αf
n(t)C (p, b)M

γ
f
n|γ̂f

n
(b)− βf

n(t)− νn(t)p
]
.
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Fig. 1. Comparison of performances of different algorithms for multiuser
downlink OFDMA channel.

Optimizations for xf
n(t) and yf

n(t) are relatively easy because their ob-
jectives are convex functions with single variable [cf. (27) and (28)].
Determinations for af

n(t), b
f
n(t) and pfn(t) in (29) can be simplified since

af
n(t) can only take value 0 or 1. Thus, we can rewrite (29) as

{bfn(t), pfn(t)} =

argmax
p∈[0,Pmax],b≥0

αf
n(t)C (p, b)M

γ
f
n|γ̂f

n
(b)− βf

n(t)− νn(t)p, (30)

af
n(t) = H

(
αf
n(t)R

f
n(t)− βf

n(t)− νn(t)p
f
n(t)

)
, (31)

where we defined Rf
n(t) = C

(
pfn(t), b

f
n(t)

)
M

γ
f
n|γ̂f

n

(
bfn(t)

)
in (31).

The next step of the algorithm is the dual iterations which evaluate in-
stantaneous constraints violations and update dual variables by

αf
n(t+ 1) =

[
αf
n(t)− ε(t)

[
af
n(t)R

f
n(t)− xf

n(t)
]]+

, (32)

βf
n(t+ 1) =

[
βf
n(t)− ε(t)

[
yf
n(t)− af

n(t)
]]+

, (33)

νf
n(t+ 1) =

[
νf
n(t)− ε(t)

[
Pn −

∑
f∈F

af
n(t)p

f
n(t)

]]+
. (34)

Similar to the case of OFDMA, there are two possible step size rules: 1)
Diminishing step size: in this case algorithm converges almost surely; 2)
Constant step size: in this case algorithm is almost surely feasible and
optimal in an ergodic sense.

4. NUMERICAL RESULTS

In the first set of simulations, we compare algorithms for downlink
OFDMA channel. Assume the number of user is N = 8 and there are
|F| = 4 frequencies available. Model the real channel coefficient h as
random variables with complex Gaussian distribution CN (0, 2) and the
channel estimation error as complex Gaussian distribution CN (0, σ2

e)
with σ2

e = 0.1. The total average power budget is P0 = 4 and the
channel capacity function takes the form of log(1 + pfn(t)γ

f
n(t)). Sum

utility is used, i.e, Un(rn) = rn. We run the proposed algorithm with
constant step size ε(t) = 0.01 and compare its performance with two
suboptimal solutions: 1) We do channel backoff first such that a fixed
outage probability is achieved, followed by optimal power allocation.
In particular, we set the maximum allowed outage probability to 0.01,
i.e., we compute bfn(t) such that Mγ(t)|γ̂(t)(b

f
n(t)) = 1 − 0.01 = 0.99

followed by power allocation. 2) We do not perform channel backoff,
i.e. bfn(t) = γ̂f

n(t). Fig. 1 compares the total average transmission rate
achieved by all three algorithms over 3000 time slots. We conclude that:
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Fig. 2. Comparison of performances of different algorithms for multiuser
uplink RA channel.

1) Channel backoff is very important when dealing with imperfect CSI
(6.6 vs. 2.8); 2) Jointly optimizing power allocation and channel backoff
results in considerate performance improvement (6.6 vs. 5.5).

For the simulation of algorithms for uplink RA channel, we assume
similar parameters as in the case of OFDMA except for the the power
constraint which we set P0,n = 4 for all n. All coefficients for the
weighted proportional fair utility are set to 1. We run the proposed algo-
rithm with constant step size ε(t) = 0.01 and compare its performance
with two suboptimal solutions: 1) Without power control, i.e. pfn(t) is al-
ways constant such that average power constraint is satisfied. 2) Without
channel backoff, i.e. bfn(t) = γ̂f

n(t). Fig. 2 compares the total average
transmission rate achieved by all three algorithms over 3000 time slots.
Again, by jointly optimizing the frequency access, power allocation and
channel backoff the proposed algorithm achieves the highest total trans-
mission rate.
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