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Abstract—Recently, a blind subspace channel estimation algorithm in
which using only a few received OFDM blocks is proposed. Based on this
earlier work, we introduce a novel subspace-based blind carrier frequency
offset (CFO) estimation method for OFDM systems. The CFO is obtained
by solving the nullspace of the proposed rank-reduced matrix and the
CFO estimate is given in closed form. Moreover, we do not make the
assumption that the modulation symbols are white or constant-modulus.
Simulation results show that the proposed method performs better than
the existing methods.

Index Terms—Carrier frequency offset (CFO), orthogonal frequency
division multiplexing (OFDM), blind method

I. INTRODUCTION

Orthogonal Frequency division multiplexing (OFDM) modulation

has been widely employed in modern transmission systems due to its

ease of channel equalization, high spectrum efficiency, and flexible

data rate. It is well known that OFDM systems are very sensitive to

the carrier frequency offset (CFO). CFO will destroy the subcarrier

orthogonality. Many CFO estimation algorithms have been proposed

in the past. These methods can be generally divided into the data-

aided and the blind schemes depending on whether or not a training

sequence is used.

Blind CFO estimation has received a great attention in the last

decade ([1]-[4], [6]) because of its bandwidth efficiency. Some of

the methods are based on the constant-modulus (CM) constellations

or on the knowledge of the second-order statistics of the transmitted

symbols, e.g. the least-square based (LS-based) method in [2], the

subspace method in [3], and the smoothing power spectrum (SPS)

approach in [6]. Their performances degrade when a non-CM signal

constellation is used. On the other hand, constellation-independent

approaches were found in [1] and [4]. The redundant information

within the cyclic prefix (CP) is exploited in [1]. But for channels

with long impulse responses, their CFO estimate will be inaccurate.

In [4], a CFO estimate was derived by minimizing the off-diagonal

terms of the covariance matrix of the received signal. However, a

very large amount of symbols is needed for the accurate sampled

covariance matrix.

The system parameter called repetition index (denoted Q through-

out the following) was introduced in [5] for blind channel identifica-

tion. By keeping the CP symbols, the authors proposed a structure

such that the information within each received block can be utilized

Q times. As a result, the performance can be greatly improved when

the number of received blocks is limited. Inspired by [5], a novel

subspace-based blind CFO estimation algorithm is proposed in this

paper. We first build a new matrix structure using Q, whose rank

is invariant with CFO. Then we show that the rank of the proposed

structure can be reduced by Q − 1 after a simple matrix addition.

By solving the nullspace of this matrix addition, the CFO estimate

can be obtained. We do not assume that the modulation symbols are
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constant-modulus or white. As shown in the simulation, our method

performs better than the existing works.

The rest of this paper is organized as follows. Section II reviews

the system model. The proposed matrix structure and the CFO

estimation algorithm are derived in Section III. Simulation results

and comparisons are shown in Section IV. Concluding remarks are

given in Section V.

Notations: The scalar j =
√
−1 and (·)∗ denotes complex

conjugation. Column vectors (matrices) are indicated by lowercase

(uppercase) boldfaced letters. AT , A†, and A� denote the trans-

pose, conjugate-transpose, and pseudoinverse of A, respectively. The

notation WM denotes the M × M normalized DFT matrix whose

(k, l)th element is (1/
√
M)e−j2π(k−1)(l−1)/M . We also adopt some

notations from [5]. For a vector a =
[
a1 a2 · · · am

]T
, we

use Tn(a) to denote the (m+n−1)×n full-banded Toeplitz matrix

Tn(a) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 0
...

. . .

am a1

. . .
...

0 am

⎤
⎥⎥⎥⎥⎥⎥⎦
. (1)

The sub-vector [a]kl of a is defined by [a]kl =[
ak ak+1 · · · al

]T
for k ≤ l. Due to the special property

of cyclic prefixes, this definition is extended to arbitrary pair of

integers k and l satisfying k ≤ l by defining ai as a(i−1 mod m)+1

for i > m or i < 1. For example, if a =
[
a1 a2 a3

]T
, then

[a]−1
4 =

[
a2 a3 a1 a2 a3 a1

]T
.

II. SYSTEM MODEL

In an OFDM system, the vector sM (n) =[
s1(n) s2(n) · · · sM (n)

]T
is modulated by an

M × M IDFT matrix W†
M , producing xM (n) =[

x1(n) x2(n) · · · xM (n)
]T

. A cyclic prefix of length

L is added before the transmission. Let the transmitted signal be the

(M + L)× 1 vector:

x(n) =

[
xcp(n)
xM (n)

]
= [xM (n)]−L+1

M . (2)

We assume that the channel h =
[
h0 h1 · · · hL

]T
. The

received vector is y(n) =
[
yT

cp(n) yT
M (n)

]T
, where the M × 1

vector yM (n) is

yM (n) = HcirxM (n) + qM (n), (3)

and Hcir is the M × M circulant matrix whose first column

is
[
h0 h1 · · · hL 0 · · · 0

]T
and qM (n) is the white

noise component. The L × 1 vector ycp(n) contains inter-block

interference (IBI) and can be written as

ycp(n) = Hlxcp(n) +Huxcp(n− 1) + qcp(n), (4)
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where Hl is an L × L lower-triangular Toeplitz matrix whose first

column is
[
h0 · · · hL−1

]T
, Hu is an L× L upper-triangular

Toeplitz matrix whose first row is
[
hL · · · h1

]
, and qcp(n) is

another white noise component. Now suppose that the OFDM system

suffers from CFO. Let Δf be the unknown CFO in Hz and Ts be

the sampling period. Then the received vector becomes

z(n) =

[
zcp(n)
zM (n)

]
= cθ(n)

[
e−j2πLθ/MEL(θ)ycp(n)

EM (θ)yM (n)

]
, (5)

where θ = ΔfMTs is the normalized CFO parameter, cθ(n) =
ej2π(n(M+L)+L)θ/M represents the phase rotate accumulated from

previous blocks, and Ek(θ) is the k × k diagonal matrix:

Ek(θ) = diag(1, ej2πθ/M , . . . , ej2π(k−1)θ/M ).

III. PROPOSED CFO ESTIMATION ALGORITHM

Below we will first propose a matrix structure using the CFO-free

signal y(n). Then its relation to the CFO-corrupted signal z(n) is

examined and a subspace-based blind CFO estimation algorithm is

derived.

A. Proposed structure

We define a 2(M + L)× 1 composite block vector

ȳ(n) =

[
y(n− 1)
y(n)

]
(6)

and the corresponding Q-repeated block matrix

YQ(n) =
[
0(2M+L+Q−1)×L I2M+L+Q−1

]
TQ(ȳ(n)), (7)

where the notation TQ(·) is defined in (1). From above, YQ(n) is

defined as the last 2M + L+Q− 1 rows of TQ(ȳ(n)). Below we

will study the rank of YQ(n), which is useful for CFO estimation

in Sec. 3.2.

It is shown in the Appendix that the modified channel equation

can be written as

YQ(n) = AQXQ(n), (8)

where AQ is a (2M + L + Q − 1) × (2M + 3(Q − 1)) matrix in

(31) and XQ(n) is a (2M +3(Q−1))×Q composite signal matrix

in (31). Define the matrix

YQ,low(n) =

⎡
⎢⎢⎢⎢⎣

0(2M+L)×Q

y1(n) 0 · · · 0
...

. . .
. . .

...

yQ−1(n) · · · y1(n) 0

⎤
⎥⎥⎥⎥⎦ , (9)

where yi(n) is the ith entry of yM (n). Adding YQ,low(n) to YQ(n),
we get

ỸQ(n) = YQ(n) +YQ,low(n) = BQX̃Q(n), (10)

where BQ is a (2M + L + Q − 1) × (2M + 2(Q − 1)) matrix in

(33) and X̃Q(n) is the matrix consisting of the first 2M +2(Q− 1)
rows of XQ(n). After collecting J received blocks, we have1

Ỹ
(J)
Q = Y

(J)
Q +Y

(J)
Q,low, (11)

where

Y
(J)
Q =

[
YQ(1) YQ(2) · · · YQ(J − 1)

]
, (12)

Ỹ
(J)
Q =

[
ỸQ(1) ỸQ(2) · · · ỸQ(J − 1)

]
, (13)

Y
(J)
Q,low =

[
YQ,low(1) YQ,low(2) · · · YQ,low(J − 1)

]
. (14)

1Due to (6), we can form only J − 1 many YQ(n) for J received blocks.

Using (8) and (10), it can be proved that the ranks of Y
(J)
Q and Ỹ

(J)
Q

satisfy the following theorem:

Theorem 1: Assume that (i) J is large enough such that[
XQ(1) · · · XQ(J − 1)

]
has full row rank 2M + 3(Q− 1),

(ii) h0 �= 0 and H(ej2πl/M ) �= 0 for 0 ≤ l ≤ M − 1, and (iii)

Q ≤ L/2 + 1. Then rank(Y
(J)
Q )− rank(Ỹ

(J)
Q ) = Q− 1.

The proof is omitted due to the space limitation. Theorem 1 shows

that by adding Y
(J)
Q,low to Y

(J)
Q , we can reduce the rank of Y

(J)
Q

by Q − 1. Below we will show how to exploit this rank-reduction

criterion for CFO estimation.

B. CFO estimator

When there is CFO, the received vector is z(n), not y(n).
Similar to (6), let us form the composite block z̄(n) =[
zT (n− 1) zT (n)

]T
. Then it is easy to verify that for any

nonnegative integer Q, we can write

TQ (z̄(n)) = cθ(n)e
−j2πLθ/ME2(M+L)+Q−1(θ)TQ (ȳ(n))EQ(−θ)

(15)

Define the following (2M+L+Q−1)×(J−1)Q Toeplitz-cascading

matrix:

Z
(J)
Q =

[
ZQ(1) ZQ(2) · · · ZQ(J − 1)

]
, (16)

where ZQ(n) is formulated as the structure in (6)-(7) using the CFO-

corrupted vector z̄(n). By combining (7) and (15), and using the fact

that cθ(n+ 1) = ej2π(M+L)θ/Mcθ(n), we can rewrite (16) as

Z
(J)
Q =cθ(n)E2M+L+Q−1(θ)Y

(J)
Q (EJ−1 ((M + L)θ)⊗EQ(−θ)) ,

(17)

where ⊗ denotes the Kronecker product and Y
(J)
Q is the CFO-free

matrix in (12). Let us define another (2M +L+Q− 1)× (J − 1)Q

matrix by replacing Y
(J)
Q in (17) with Ỹ

(J)
Q defined in (13):

Z̃
(J)
Q �cθ(n)E2M+L+Q−1(θ)Ỹ

(J)
Q (EJ−1 ((M + L)θ)⊗EQ(−θ)) .

(18)

From the formulation in (17) and (18), because both diagonal CFO

matrices E2M+L+Q−1(θ) and (EJ−1 ((M + L)θ)⊗EQ(−θ)) are

invertible, we have rank(Z
(J)
Q ) = rank(Y

(J)
Q ) and rank(Z̃

(J)
Q ) =

rank(Ỹ
(J)
Q ), i.e. the rank of Y

(J)
Q and Ỹ

(J)
Q are invariant with CFO.

From Theorem 1, we obtain

rank(Z
(J)
Q )− rank(Z̃

(J)
Q ) = Q− 1. (19)

Moreover, Z̃
(J)
Q can be expressed in terms of Z

(J)
Q . By substituting

(11) into (18) and using (5) and (17), it can be verified that

Z̃
(J)
Q = Z

(J)
Q + ej2πθZ

(J)
Q,low, (20)

where Z
(J)
Q,low has the same structure as (14) with elements replaced

by the CFO-corrupted symbols. From (19) and (20), we observe that

the rank of Z
(J)
Q will decrease by Q − 1 if we add ej2πθZ

(J)
Q,low to

Z
(J)
Q . This rank-reduction property will be exploited for finding the

CFO θ below.

First note that there exist Q − 1 linearly independent nonzero

vectors uk such that

u†
k

(
Z

(J)
Q + ej2πθZ

(J)
Q,low

)
= 0, 1 ≤ k ≤ Q− 1. (21)

The above equations are identified as the singular pencil. Note that

the values of uk are irrelevant to the CFO estimation. By denoting

u′
k = e−j2πθuk for 1 ≤ k ≤ Q− 1, we thus transform (21) into the

following canonical form:(
Z

(J)†
Q,low −

(
−ej2πθ

)
Z

(J)†
Q

)
u′
k = 0, 1 ≤ k ≤ Q− 1. (22)
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The problem of finding ej2πθ in the pencil is the generalized

eigenvalue problem. Since Z
(J)†
Q,low and Z

(J)†
Q are not square matrices,

the algorithms for solving the generalized eigenvalues can not be

directly applied. To overcome this issue, we multiply (22) by the

pseudoinverse of Z
(J)†
Q , resulting[(

Z
(J)†
Q

)�

Z
(J)†
Q,low −

(
−ej2πθ

)
I2M+Q−1+L

]
u′
k ≈ 0, (23)

where we use an approximation because
(
Z

(J)†
Q

)�

Z
(J)†
Q =

I2M+Q−1+L holds only when Q ≥ L/2+1 (see Theorem 1 and the

dimensions of AQ). When Q < L/2+1,
(
Z

(J)†
Q

)�

Z
(J)†
Q approaches

I2M+Q−1+L in the least square sense. Consequently, solving the

CFO is now degenerated to the ordinary eigenvalue problem. Also

note from the structures in (9) and (14) that Z
(J)†
Q,low has only Q− 1

nonzero columns, which means solving Q − 1 nonzero eigenvalues

for each equation in (23) is equivalent to solving the eigenvalues of

the submatrix

Z1� the lower right (Q−1)×(Q−1) submatrix of
(
Z

(J)†
Q

)�

Z
(J)†
Q,low.

(24)

That is, −ej2πθ is the eigenvalue of Z1 with multiplicity of Q− 1.

Finally, since the sum of eigenvalues is equal to the trace of a matrix,

the estimate of the CFO θ is obtained by

θ̂ =
1

2π
arg {− (trace(Z1))} . (25)

The range of CFO estimate is −0.5 < θ̂ ≤ 0.5.

C. The limitations on Q and J

Since Z1 is (Q − 1) × (Q − 1), Q > 1 is required. Also, from

Theorem 1, we conclude that Q should satisfy

2 ≤ Q ≤ L

2
+ 1. (26)

A necessary condition for the (2M + 3(Q− 1))× (J − 1)Q matrix[
X′

Q(1) · · · X′
Q(J − 1)

]
having full row rank is

J ≥ 2M − 3

Q
+ 4. (27)

Combining (26) and (27), the constraint on J can also be expressed

as

J ≥ 4M − 6

L+ 2
+ 4. (28)

That is, (28) shows that the smallest J for the proposed algorithm

depends on the block size M and the CP length L.

IV. SIMULATION RESULTS AND DISCUSSIONS

Consider an OFDM system with M = 64 subcarriers and CP

length L = 16. The multipath channel is modeled as a 16-order

Gaussian random FIR channel whose taps are i.i.d. with variances

Ce−k/5 for 0 ≤ k ≤ 16 and C = 1/
∑16

k=0 e
−k/5. The performance

of the CFO estimator is evaluated by the mean square error (MSE),

which is defined by MSE(θ) = E{|θ̂−θ|2}. All results are averaged

through 1000 Monte Carlo trials.

According to (26)-(28), we have 2 ≤ Q ≤ 9, and J ≥ 18. Figure

1 depicts the MSE of CFO estimate vs the SNR for various J with

θ = 0.3, for Q = 2 (dotted lines) and Q = 9 (solid lines). The

modulation symbols are QPSK. The settings of (J,Q) = (20, 2)
and (50, 2) do not satisfy (27) and thus the performances are poor

for these cases. In order to obtain good performance for Q = 2,

large J is required. The performances are significantly better when

Q = 9. We also plot the MSE of CFO estimate vs the actual CFO
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Fig. 1: MSE of CFO estimate vs SNR with θ = 0.3.
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Fig. 2: MSE of CFO estimate vs CFO with SNR = 20dB.

with SNR = 20dB in Figure 2. The proposed method is robust to

variety of CFO values.

Figures 3 and 4 compare the proposed method with existing blind

CFO estimation methods for QPSK and 16-QAM constellations,

respectively. In both figures, we set θ = 0.3 and J = 100. In Figure

3, we first see that the ‘Diagonality [4]’ is inaccurate for J = 100
since it relies on the estimate of signal covariance matrix. The ‘CP-

based [1]’ is the best for SNR<10dB, but it soon suffers from IBI

and thus degrades at high SNR. The proposed method shows the best

performance for SNR≥10dB. Note that although the performance

of ‘Subspace [3]’ is similar to the proposed method at high SNR,

it degrades significantly when SNR is low. For 16-QAM, Figure 4

shows that all methods suffer from error floor for SNR>10dB except

for the proposed method. The proposed method is significantly better

than all other methods. Since we did not post any constraint on the

data constellation, our method has the same performance for both

QPSK and 16-QAM signals.

V. CONCLUSIONS

In this paper, we proposed a subspace-based blind CFO estimation

algorithm. We formulated a new matrix structure using the repetition

index and showed that its rank can be reduced through a simple matrix

addition. Based on this, the CFO estimate is obtained by solving the

nullspace of the rank-reduced matrix. Simulation results demonstrated

that the proposed method performs better than the existing works and

it is robust to different signal constellations.

APPENDIX

Since the first L rows of TQ(ȳ(n)) are removed in (7), we can

see from (4), (6), and (7) that only the first Q − 1 rows of YQ(n)
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Fig. 3: MSE of CFO estimate vs SNR for various methods with θ = 0.3,
J = 100, and QPSK constellation.
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Fig. 4: MSE of CFO estimate vs SNR for various methods with θ = 0.3,
J = 100, and 16-QAM constellation.

are affected by xcp(n− 2). By defining the (Q− 1)×Q matrix

Xlap
Q (n− 1)

=

[
[xcp(n− 1)]1Q−1

[xcp(n− 2)]LL
[xcp(n− 1)]1Q−2

· · · [xcp(n− 2)]L−Q+2
L

]
,

we can decompose YQ(n) as

YQ(n) =

⎡
⎣ HM+L+Q−1

Htop
cir2

IQ−1

⎤
⎦

︸ ︷︷ ︸
HQ

⎡
⎢⎢⎢⎢⎢⎣

Xlap
Q (n− 1)

Xcs
Q(n− 1)

Xlap
Q (n)

Xcs2
Q (n)

Yup
Q(n)

⎤
⎥⎥⎥⎥⎥⎦ , (29)

where Hk is defined as a k × (L + k) upper-triangular Toeplitz

matrix whose first row is
[
hL · · · h0 0

]
for any k > 0,

Htop
cir2 denotes the first M − Q + 1 rows of the M × M circulant

matrix Hcir2 whose first row is
[
hL · · · h0 0

]
, Xcs

Q(n − 1)
is an (M + L − Q + 1) × Q matrix whose ith column is

[x(n− 1)]Q+i−1
M+L+i−1, and Xcs2

Q (n) is an M × Q matrix whose ith

column is [x(n)]Q+i−1
M+Q−1+i−1. Note that the last Q − 1 rows of

YQ(n), denoted as Yup
Q(n), is an upper-triangular Toeplitz matrix

whose first row is
[
0 yM (n) · · · yM−Q+2(n)

]
. In general,

there is no common channel equation for Yup
Q(n) if the channel order

is greater than 0, i.e. Yup
Q(n) cannot be decomposed as the channel

and the signal matrices with inner dimensions smaller than that of

Yup
Q(n). Because the columns of Xcs

Q(n−1) are cyclic-shifts of each

other. Using (2), we have

Xcs
Q(n− 1) = W̄†

MSps
Q(n− 1), (30)

where W̄Q =
[
wM−L+Q · · · wM WM

]
with wi denotes

the ith column of WM and the (k, l)th element of the M×Q matrix

Sps
Q(n−1) is e−j2π(k−1)(l−1)/Msk(n−1). By substituting (30) into

(29), we obtain

YQ(n) = HQ

⎡
⎣ IQ−1

W̄†
Q

IM+2(Q−1)

⎤
⎦

︸ ︷︷ ︸
AQ

⎡
⎢⎢⎢⎢⎢⎣

Xlap
Q (n− 1)

Sps
Q(n− 1)

Xlap
Q (n)

Xcs2
Q (n)

Yup
Q(n)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
XQ(n)

.

(31)

Let us denote Hbot
cir2 as the last Q − 1 rows of Hcir2, i.e. Hcir2 =[ (

Htop
cir2

)T (
Hbot

cir2

)T ]T
. By comparing the product Hbot

cir2X
cs2
Q (n)

to Yup
Q(n), we find that they are differed by

Hbot
cir2X

cs2
Q (n)−Yup

Q(n) =

⎡
⎢⎣

y1(n) 0 · · · 0
...

. . .
. . .

...

yQ−1(n) · · · y1(n) 0

⎤
⎥⎦ . (32)

By substituting (32) into (31) and using the matrix defined in (9), we

define another matrix

ỸQ(n) = YQ(n) +YQ,low(n)

=

[
HM+L+Q−1

Hcir2

]⎡⎣ IQ−1

W̄†
Q

IM+Q−1

⎤
⎦

︸ ︷︷ ︸
BQ

X̃Q(n),

(33)

where X̃Q(n) is the matrix consisting of the first 2M + 2(Q − 1)
rows of XQ(n).
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