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ABSTRACT

This paper deals with different techniques for linear equalization
of multipath channels with imperfect channel estimation (CE). We
develop a unified framework based on Krylov subspace expansion,
which allows us to compare the performance of the conjugate gra-
dient (CG) method, diagonal loading (DL), and a hybrid scheme.
Our analysis shows that the DL method generally outperforms its
alternatives, but at the cost of higher complexity. However, we also
demonstrate that a proper implementation of the low-complexity CG
method can also approach the performance of DL. Finally, we show
that preconditioning degrades performance when the CE is poor.

Index Terms— Conjugate gradient (CG), diagonal loading
(DL), imperfect channel estimation, Krylov subspace, equalization.

1. INTRODUCTION

Linear equalization is widely used for combating the inter-symbol
interference (ISI) in multipath channels [1]. Two concerns often
arise simultaneously: The complexity can be high when the sys-
tem is large, and the performance may degrade drastically when the
channel estimation (CE) is imperfect. This is even more critical in
time-varying environments.

Robust linear equalization aims to alleviate the negative impact
of imperfect CE. When a priori information about the CE error is
available, closed-form solutions to the optimal linear equalization
may be derived under certain performance criteria [2]. However,
there are still applications where such a priori information is ab-
sent or inaccurate. This paper considers such cases where regular-
ized linear equalization designed by trying multiple candidates is
applied to improve performance. Regularization [3] can be achieved
by different approaches such as diagonal loading (DL) [4, 5] and
reduced-rank processing [6]. The latter can be realized based on
eigendecomposition or Krylov subspace expansion methods such as
the conjugate gradient (CG) method [7]. Both the DL and CG meth-
ods can noticeably improve performance for imperfect CE, but a de-
tailed comparison of their performance and complexity for regular-
ized linear equalization is still missing.

This paper introduces a framework based on Krylov subspace
expansion, which provides a unifying and efficient approach to reg-
ularization. Based on this framework, we are able to compare the DL
and CG methods and a hybrid scheme for regularized linear equal-
ization of multipath channels. The analysis and numerical exam-
ples demonstrate that the DL method performs better but also re-
quires higher complexity. However, we show that the performance
gap can be greatly reduced if the CG method is used properly. We
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also study the effect of preconditioning, an important supplement to
Krylov subspace expansion methods. We show that preconditioning
is beneficial only when the CE is very accurate.

2. SYSTEM MODEL

A multiple-antenna communication system operating over a time-
invariant or quasi-static multipath channel can be modeled as

y = Hx+ n, (1)

where y ∈ C
N×1, H ∈ C

N×M , x ∈ C
M×1 and n ∈ C

N×1

are the received signal, channel matrix, transmit signal, and noise,
respectively. Assume that E[x] = 0, E[xx†] = IM , and the noise,
uncorrelated with the signal, has zero mean and covariance matrix
σ2
nIN , where E[·] denotes expectation, (·)† conjugate transpose and

IN an N × N identity matrix. Let nt and nr be the numbers of
transmit and receive antennas, respectively.

Model (1) can be used for both serial and block equalization.
In the serial mode, y denotes a sliding-windowed received signal
vector. Let T be the window size, L the number of channel taps,
and Hl ∈ C

nr×nt the lth tap coefficient matrix. Then the channel
matrix can be written as

H=

⎛
⎜⎜⎜⎝

HL HL−1 · · · H1

HL . . . H2 H1

. . .
...

...
. . .

HL HL−1 · · · H1

⎞
⎟⎟⎟⎠ (2)

with N = Tnr and M = (T + L − 1)nt. For each y, nt symbols
transmitted at time T −Td are jointly estimated if the decision delay
is Td. Block linear equalization can be applied when a guard interval
is inserted for each block. In this case,

H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

H2 H1

...
...

. . .

HL HL−1 · · · H1

. . .
. . .

. . .

HL · · · H1

. . .
...

HL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

If the transmit block length at each antenna is T −L+1, then N =
Tnr and M = (T −L+1)nt. Given y, all the M symbols in x are
jointly estimated. In (2) and (3) H is block-banded. In many cases,
H is also sparse, with a large L but only a few nonzero Hl.

Assume that H and σ2
n are estimated as Ĥ and σ̂2

n, respectively,
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at the receiver. A naive linear equalization scheme treats Ĥ and σ̂2
n

as perfect. For serial equalization, the mth entry of x is estimated
from y as x̂m = w†

my, where m ∈ {(T −Td−1)nt+1, . . . , (T −
Td)nt}, wm solves

(ĤĤ† + σ̂2
nIN )wm = ĥm, (4)

and ĥm is the mth column of Ĥ. For block equalization, x can be

estimated as x̂ = Ĥ†z where z solves

(ĤĤ† + σ̂2
nIN )z = y. (5)

It can be verified using the Woodbury matrix identity that an equiv-
alent estimate is the solution to

(Ĥ†Ĥ+ σ̂2
nIM )x̂ = Ĥ†y. (6)

The naive linear equalization scheme solves (4), (5) or (6) exactly,
e.g., using the Cholesky factorization, forward and backward substi-
tution [7]. Its drawback is that the complexity is cubic in the size
of the system and the performance can degrade dramatically with
imperfect CE.

3. REGULARIZED LINEAR EQUALIZATION

This section compares various regularized linear equalization
schemes in a framework that combines preconditioning, projec-
tion, and diagonal loading (DL). The key step for linear equalization
is to solve (4), (5) or (6) which has the form

At = b. (7)

Instead of the exact solution t = A−1b, a regularized solution treg

to (7) is pursued.

treg = PVcDL
(8)

cDL = (T+ δIK)−1d (9)

T � V†P†APV (10)

d � V†P†b. (11)

The ideas behind these schemes are as follows:

• Preconditioning: A preconditioner P is applied to (7) such
that P†AP has clustered eigenvalues.

• Projection: The system P†AP(P−1t) = P†b is projected
onto a rank-K subspace with K orthonormal basis vectors
specified by the columns of V, leading to a linear system
Tc = d with T and d given by (10) and (11), respectively.

• DL: A DL solution (9) to Tc = d is computed and a reduced-
rank solution to (7) is then obtained using (8), giving

treg = PV(V†P†APV + δI)−1V†P†b, (12)

where δ is the DL factor.

The above formulation is very general. For example, for the prin-
cipal component analysis (PCA) method, P = I, δ = 0 and V
consists of the K principal eigenvectors of A.

3.1. Krylov Subspace Projection

For a matrix A and a vector b, the order-K Krylov subspace is de-
fined as KK(A,b) � span(b,Ab, . . . ,AK−1b). Given a precon-
ditioner P, the following Lanczos procedure can be used to generate
an orthornormal basis for KK(P†AP,P†b) and a tridiagonal T.
First, set v0 = 0, β1v1 = P†b where β1 = ||P†b||. Then, for

i = 1, 2, . . . ,K, compute

αi = v†
iP

†APvi

βi+1vi+1 = P†APvi−αivi−βivi−1 (13)

recursively, where {βi} are chosen to make {vi} unit length. This
procedure yields V = [v1, . . . ,vK ] and a tridiagonal matrix

T = V†P†APV =

⎡
⎢⎢⎢⎢⎣

α1 β2

β2

. . .

. . . βK

βK αK

⎤
⎥⎥⎥⎥⎦ . (14)

With tridiagonal T, (9) can be solved with 9K operations [7, p. 157].

3.2. Preconditioning

One approach to reducing the rank for Krylov subspace expansion
is to use a preconditioner P to cluster the eigenvalues of P†AP.

Consider (4) and (5) where A = ĤĤ† + σ̂2
nIN , which can be ap-

proximated by the covariance matrix of the observed vector for a
cyclic-prefixed system operating over the same channel:

Ã = FRx(GG† + σ̂2
nIN )F†

Rx, (15)

where FRx=F⊗Inr , ⊗ denotes Kronecker product, F is the unitary
T×T discrete Fourier transform matrix, and G � diag(G1,G2, . . . ,GT )

is block-diagonal with blocks Gk =
∑L

l=1 Ĥle
− j2π(k−1)(l−1)

T of
sizenr×nt, which can be computed using nrnt FFTs of T points.
A preconditioner is constructed as

P = FRx(GG† + σ̂2
nIN )−1/2, (16)

which can be implemented based on the Cholesky factors of
GkG

†
k + σ̂2

nInr , k = 1, 2, . . . , T . Preconditioner (16) is, in
essence, a circulant preconditioner [11] constructed from the CE.

3.3. Analysis of Regularization Effect and Complexity

Different regularized linear equalization schemes can now be dis-
cussed using the above framework. A globally optimal solution to
(P,K, δ) leads to high complexity. This paper analyzes and com-
pares three suboptimal solutions with relatively low complexity.

3.3.1. Conjugate Gradient (CG)

Without preconditioning and diagonal loading (P = I, δ = 0),

treg = V(V†AV)−1V†b (17)

is the same as a solution obtained by applying the CG (or other
equivalent) algorithm [8, 9, 10] to At = b. As K increases, ap-
proximate solutions in different Krylov subspaces KK(A,b) are
obtained. For perfect CE, the performance improves with K until
KK(A,b) converges. For imperfect CE, a semi-convergence be-
havior may be observed: At the beginning, the performance im-
proves with K by including more basis vectors specified by {vi};
after crossing the optimal rank K�, the performance degrades with
K due to the increasing contribution from less reliable directions
contaminated by the CE error. The K� can be determined by esti-
mating the mean squre error (MSE) using training or the decisions
on x. It is often the case that K� corresponds to the first local min-
imum of the MSE versus K curve. In this case, the maximum K to
be tested is only slightly larger than K� and the overall complexity
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is linear in K�. The CG method usually requires lower complex-
ity than the Cholesky factorization method for linear equalization in
large systems.

For block equalization, applying the CG algorithm to (5) and (6)
yield different regularization effect. With (5), a regularized solution

zreg to (5) is first obtained and x is then estimated as x̂ = Ĥ†zreg.
The operation Ĥ†zreg compromises the regularizaton effect since it
can re-introduce the error due to the imperfect CE. Consequently,
the scheme based on (6), which regularizes the solution at the final
stage, outperforms the one using (5). When σ̂2

n = 0 and (6) is used,
the CG solution is equivalent to the LSQR algorithm [10].

3.3.2. Diagonal Loading (DL)

The Krylov subspace expansion also yields an efficient approach to
implementing the DL method. Without preconditioning (P = I),

treg = V(V†AV + δI)−1V†b (18)

gives a reduced-rank solution to the diagonally loaded system

(A+ δI)t = b, (19)

which resides in a rank-K Krylov subspace KK(A + δI,b) =
span(b, (A + δI)b, . . . , (A + δI)K−1b) = KK(A,b). As V
and T = V†AV are independent of δ, the Lanczos procedure in
Section 3.1 can be shared by different δ. Then for different DLF δ,
one only needs to solve (9) using Cholesky factorization (or other
methods) with a complexity linear in K.

This provides a low-complexity alternative to the eigendecom-
position approach to implementing DL. (The latter has been sug-
gested in [4].) Firstly, computing an orthorgonal basis vector for
KK(A,b) is significantly cheaper than computing an eigenvector of
A, especially for a sparse A [7]. Secondly, the rank K required for
solving (19) is much smaller than the eigendecomposition approach
if A has clustered eigenvalues.

The DL method can outperform the CG method in terms of regu-

larization effect. Let us model the imperfect CE by Ĥ = H+H̃ and
σ̂2
n = σ2

n + σ̃2
n, where H̃ and σ̃2

n denote the errors in the estimates
of channel matrix and noise variance, respectively. Assume that H̃
and σ̃2

n are independent of x, n, H, and σ2
n, and H̃ has zero-mean.

Consider the equalizer x̂ = W†y. Then the total MSE averaged

over H̃, σ̃2
n, x and n, conditioned on Ĥ and σ̂2

n, is

EH̃,σ̃2
n,x,n

[
||x̂− x||2|Ĥ, σ̂2

n

]

= EH̃,σ̃2
n,x,n

[
x†(W†H−I)†(W†H−I)x+n†W†Wn|Ĥ, σ̂2

n

]

= tr
(
EH̃

[
(H†W − I)(W†H− I)

])
+ Eσ̃2 [σ2

n]tr
(
WW†

)

= tr
((

ĤĤ† + EH̃[H̃H̃†] + (σ̂2
n + Eσ̃2 [σ̃2])I

)
WW†

)

−tr
(
ĤW† +WĤ†

)
+M. (20)

It can be verified that the optimal equalizer that minimizes (20) is

W =
(
ĤĤ† + EH̃[H̃H̃†] + (σ̂2

n + Eσ̃2 [σ̃2])I
)−1

Ĥ. (21)

If the entries of H̃ are uncorrelated and EH̃[H̃H̃†] = εI for some ε,
the optimal equalizer can be found by trying different DL factors. In
this sense, the DL method can outperform the CG method.

The parameters K and δ can be determined by a two-stage pro-
cedure. First, a K large enough is chosen (e.g., by the discrepancy
criterion) such that At = b can be solved almost exactly. Then δ
is found from a number of candidates, similarly to the search of K
for the CG method. In this paper, δ is chosen from 21 candidates

tr(T)
K

10−0.4p, p = 0, 1, . . . , 20. The resulting complexity of DL is
linear in K and higher than the CG method since the rank K needed
is usually larger than the optimal K� for the CG method.

3.3.3. Hybrid Regularization
The CG and DL methods use either K or δ to control the regulariza-
tion effect. The CG method may suffer from relatively poor perfor-
mance while the DL method requires higher complexity. A hybrid
scheme that yields a compromise between these methods is as fol-
lows: First, choose a K as the optimal K� as in Section 3.3.1. Then
δ is optimized with K = K�.

3.3.4. Impact of Preconditioning

Preconditioning aims to reduce the rank required for solving (7) ex-
actly. This can reduce complexity for the case with highly accurate
CE. With imperfect CE, preconditioning may compromise the regu-
larization effect. Intuitively, this is because the linear transform by
P �= I mixes the signal and noise subspaces.

3.4. Examples
The discussions above are now validated by examples. Assume that
Q out of the L tap coefficient matrices Hl are nonzero, the entries
of the nonzero Hl are i.i.d., complex Gaussian with variance 1/Q
and the imperfect CE introduces uncorrelated errors to the estimates
of nonzero Hl, as modeled in Section 3.3.2. The CE error is char-
acterized by E[||H̃l||2]/E[||Hl||2]. In Fig. 1, a serial equalization
scheme with mismatched noise variance information σ̂2

n = 0 is sim-
ulated. Only the best achievable performance and the corresponding
ranks for each regularization scheme are shown. Practical parameter
determination is not considered here due to space limitations. For a
fixed preconditioner P, the overall complexity for each regulariza-
tion scheme is linear in the average rank shown in Fig. 1b. For a fixed
rank, the complexity with preconditioning is about twice that with-
out preconditioning. Fig. 2 considers the case with perfect estimate
of noise variance, i.e., σ̂2

n = σ2
n. Fig. 3 shows a block equalization

example with σ̂2
n = 0.2σ2

n. The simulation results agree well with
the discussions in the previous sections.

4. CONCLUSIONS

This paper has discussed regularized linear equalization for multi-
path channels with imperfect channel estimation. It is shown that
Krylov subspace expansion offers a unified framework for various
regularization techniques. The analysis and examples demonstrate
that the CG method achieves a good performance-complexity trade-
off; the DL method provides noticable performance gains if the esti-
mation of channel and noise variance is poor; and preconditioning is
useful only when the channel estimation is reasonably accurate.
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n = 10 dB,

σ̂2
n = 0 and decision delay Td = 64. The DL scheme outperforms CG but requires higher complexity. Preconditioning degrades performance.
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similar performance, with DL performing slightly better.
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