
INFERENCE USING PHI-DIVERGENCE

GOODNESS-OF-FIT TESTS

Nikhil Kundargi, Student Member, IEEE, and Ahmed Tewfik, Fellow, IEEE

University of Texas at Austin

Abstract—In this paper we study the inferential use of goodness
of fit tests in a non-parametric setting. The utility of such tests will
be demonstrated for the test case of spectrum sensing applications
in cognitive radios. For the first time, we provide a comprehensive
framework for decision fusion of a ensemble of goodness-of-fit testing
procedures through an Ensemble Goodness-of-Fit test. Also, we introduce
a generalized family of functionals and kernels called Φ-divergences
which allow us to formulate goodness-of-fit tests that are parameterized
by a single parameter s. The performance of these tests is simulated
under gaussian and non-gaussian noise in a MIMO setting. We show
that under uncertainty or non-gaussianity in the noise, the performance
of non-parametric tests in general, and phi-divergence based goodness-
of-fit tests in particular, is significantly superior to that of the energy
detector with reduced implementation complexity. Especially important is
the property that the false alarm rates of our proposed tests is maintained
at a fixed level over a wide variation in the channel noise distributions.

Index Terms—Goodness of Fit tests, Ensemble Tests, Phi Divergence,
Spectrum Sensing, Non parametric Inference, Decision Fusion.

I. INTRODUCTION

The problem of signal detection using statistical inference is con-

ventionally treated as that of hypothesis testing for parametric models

where the distributions are modeled using known and parametrized

probability functions which usually belong to the exponential family

of distributions. While such a framework has worked remarkably well

in the past, recently, applications have arisen where the hypotheses

to be tested are not well defined. Also, the robustness of parametric

tests is often inferior to that of equivalent non parametric tests. The

penalty incurred for this increase in robustness is a decrease in the

power of the test. Goodness of Fit (GoF) tests are a particularly

popular and robust class of inferential tests that have been popular

for almost a century in the statistical community [1], [2]. Recently,

there has been an effort to study the performance of these tests for

hypothesis testing applications, and highly encouraging results have

been obtained [3]–[5].

The goal of the spectrum sensing problem is to quickly detect

if the channel under consideration is vacant and can be used for

opportunistic transmission by the secondary user (SU) or if it is

occupied by the primary user (PU). In [3], a fast and robust spectrum

sensing scheme is proposed using the Kolomogorov-Smirnov (KS)

goodness of fit test. In the presence of a Gaussian noise, the KS

test has been shown to be highly robust to uncertainty in background

noise estimation as compared to the energy detection (ED). Moreover,

its performance is significantly better than the ED test in the presence

of non-Gaussian noise also, where other spectrum sensing methods

often fail. But the KS test can only claim the model that the noise

has the estimated noise density can be rejected with a confidence

level of α (usually set to 90 - 99.9 % ). So, the test statistic can

exceed the threshold when the assumed noise model is wrong as

often happens in presence of impulsive non-Gaussian noise. Also, [4]

recently proposed an Anderson Darling version of goodness of fit test

for spectrum sensing but do not apply it to non-gaussian noise models.

The problem of reliable detection of gray space transmit opportunities

using goodness-of-fit and other non-parametric techniques has been

previously studied by the authors in the context of Medium Access

layer packet statistics [6]. It has recently been shown that Phi

Divergences are the optimal formulations for goodness-of-fit testing

[7], [8]. Many previous goodness-of-fit tests that have been proposed

can be reduced to be specialized cases of the phi-divergence statistic.

We will use these generalizations to come up with a powerful family

of goodness of fit statistics.

In this paper, we propose the following a) A generalized framework

based on phi-divergences. We show how Phi-divergence goodness-of-

fit tests can be selectively tuned to a specific region of the density. b)

Extensive simulation results of the performance of these tests under

Gaussian and non-Gaussian (impulsive) noise, c) A novel decision

fusion method based on the statistical nature of the p-value metric.

II. INFERENCE PROBLEM FORMULATION

Consider the scenario where a unlicensed cognitive radio is trying

to detect the presence of a licensed primary user via spectrum sensing.

We model the general case where both the primary and secondary

users have multiple antennas. Specifically, the MIMO channel is

created by MT transmit antennas and MR receive antennas. The

disrete-time baseband MIMO channel with fading at a given cognitive

radio is

y[n] =

P∑
p=1

L−1∑
l=0

Hp[n, l]sp[n− l] = v[n], (1)

where y[n] is the received signal after sampling, P is the number

of PUs transmitting over the sensed channel, the multipath delay in

number of symbol intervals is L, Hp[n, l] ∈ CMT×MR is the complex

MIMO channel tap matrix. Also sp[n− l] ∈ CMT is the signal vector

received at the cognitive radio antennas at time n and v[n] ∈ CMR

is the noise vector. For the special case of frequency flat fading with

a block transmission of size T symbols, eq (1) simplifies to,

Y =

√
Es

MT
HS+V. (2)

Here, Y is the MR × T block of received signal vectors, Es is the

total average energy available at the transmitter over a single symbol

period, H is the MIMO channel matrix. Note that the channel noise

V � [v[n], n = 1, ..., T ] can take on arbitrary distributions.

The problem is structured such that the misclassification of a

occupied channel as vacant is heavily penalized. This leads to the

following formulation of the hypothesis testing inference problem.

H0 : Only background noise present

H1 : Primary user signal + Noise present
(3)

Radio Frequency Interference (RFI) caused due to impulsive noise

is a severe issue in modern spectrum sensing applications. The non-

parametric nature of the godness-of-fit test becomes advantageous

when there is such type of added RFI front end noise that is

non-Gaussian in nature. The performance of conventional detection

techniques degrades severely under such conditions, whereas we
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show that GoF tests are robustly able to handle such noise. We follow

the bivariate Middleton Class A noise model as proposed in [9]–[11],

which also explicitly accounts for the standard thermal noise through

an additive gaussian component. Narrowband impulsive noise is mod-

eled as a series of independent events that are identically distributed.

Also, the in-phase and quadrature components are modeled as i.i.d.

III. PHI-DIVERGENCE BASED GOODNESS-OF-FIT TESTS

A. Goodness-of-Fit Procedures

A goodness-of-fit test is a procedure for testing how well a certain

distribution fits a given observation [1], [2]. To be more specific,

consider a continuous random variable X with distribution F(x)
and let X1, X2, ..., Xn be a random sample of independent and

identically distributed random variables each following distribution

F(x), with order statistics X(1) ≤ X(2) ≤ ... ≤ X(n). To implement

a goodness-of-fit test, we modify eq (3) to

H0 : F(x) = F0(x) (Null hypothesis),

H1 : F(x) �= F0(x) (Alternative hypothesis).
(4)

Here F0(x) is the hypothesized null distribution function to be

tested. The alternative hypothesis is transformed into a composite

hypothesis that is defined as the complement of the null hypothesis.

The Empirical Distribution Function (edf) of X is defined as

Fn(x) =
1

n

n∑
i=1

1I(Xi < x), −∞ < x < ∞ (5)

where 1I(.) is the indicator function that evaluates to 1 if the con-

dition in the braces is true, and is 0 otherwise. Also, the probability

integral transformation theorem is stated below. The edf as defined in

eq (5) combined with the probability integral transformation theorem

leads directly to a number of powerful goodness-of-fit tests. See [12]

for a generalized proof of the theorem.

Theorem 1. Probability Integral Transformation
Let a random variable X have a distribution F(x). If F is continu-
ous, the random variable Z produced by a transformation Z = F(X)
has a uniform probability distribution over the interval 0 ≤ z ≤ 1.

B. Phi-Divergences

In this section we introduce the framework of Phi-Divergences for

the purpose of inference between two hypotheses. Let φ(x) be a

convex function with domain x ∈ [0,∞) and range �∪ {∞}. Then

the supremum and integral versions of the Jager-Wellner Generalized

Phi Divergences will be defined as

Sn(φ) = sup
x

Kφ

(
Fn(x), x

)
, (6)

Tn(φ) =

∫ 1

0

Kφ

(
Fn(x), x

)
dx. (7)

For ease of computation, we restrict ourselves to the following

special class of φ-functions using the parameter s ∈ �

φs(x) =

⎧⎪⎨
⎪⎩

[1− x− sx− xs]/[s(1− s)] s �= 0, 1,

x(log x− 1) + 1 s = 1,

log(1/x) + x− 1 s = 0.

(8)

Also, with the kernel function used in eq (6) defined as in eq (9),

we get the family of φs-divergences.

Ks(u, v) = vφs(u/v) + (1− v)φs([1− u]/[1− v]). (9)
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Fig. 1: Φ function plots
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Fig. 2: Distribution of p-values under H1 and H0 for SNR = -2 dB,

test size = 50

After substituting φs(x) as per eq (8) into eq (9), we get,

Ks(u, v) =
1

s(1− s)

(
1− usv1−s − (1− u)s(1− v)1−s

)
. (10)

Here, φs is continuous in s ∀x ∈ (0, 1) and Ks is continuous in

s ∀ (u, v) ∈ (0, 1)2. For each s, we obtain a unique goodness-of-fit

test.

IV. ROBUST FUSION OF GOODNESS OF FIT TESTS

Phi-divergences are universal hypothesis tests and their behavior

is controlled only in one direction, i.e testing for H0. The behavior

of the test in rejecting H0 when H1 holds, i.e in the alternative

hypothesis regime, is called the power of the test procedure ( PD).

The power changes depending on the type of distribution we are

testing for. As a result, there is no ’uniformly most powerful’

test from such a non-parametric setting, and different tests will be

locally the most powerful, for a given set of alternate distributions.

Depending on the structure of the distribution under the alternate

hypothesis, the different goodness-of-fit tests vary greatly in power.

Thus it is not possible to recommend a single test as an omnibus

test over a range of SNRs as its performance may be surpassed by

another test under different operating conditions. Recognizing this

fact, we propose to apply a battery of tests for uniformly spaced s
using a novel Thresholded Extreme Value (TEV) method that we call

the Ensemble Goodness-of Fit (EG) test.

A. Ensemble of Φ-Divergence Test (EP) test

In statistics, the p-value of a test is defined as the tail integral of the

density of the test statistic. Consider a GoF test with a statistic T (X).
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Let ZT (t) and WT (t) be the cumulative distributions of T under the

null hypothesis (H0) and alternative hypothesis (H1) respectively.

Then for a given observed test statistic T (X) = τ , the p-value is,

ρ(τ) = sup
θ∈Ω0

P(T (X) ≥ τ). (11)

For the special case of a simple null hypothesis,

ρ(τ) = P(T > τ |H0) = 1− ZT (τ) =

∫ +∞

τ

zT (t) dt. (12)

The p-value acts as an indicator of the confidence of the decision

reached by theGoF test under a set of specific operating conditions.

A low p-value indicates that we are highly unsure about rejecting

the null hypothesis while a high p-value indicates that we are

highly confident in rejecting the null hypothesis to be true. The

principle advantage here is that the p-value is obtained via an

implicit probability integral transformation and hence the p-values

are distributed uniformly over [0, 1] under the null hypothesis. This

allows us to compare the outputs of different types of goodness-

of-fit tests that have mismatched ranges of their test statistics on a

standardized [0, 1] interval.

Theorem 2. The distribution of p-values for the null hypothesis is
uniform over [0,1] for any test sample size.

Our approach is based on the observation in [13] that the distribu-

tion of the p-value under both hypothesis is essential to formulate a

threshold. Out of the ensemble of GoF tests,we accept the decision

of the test that has the most extreme p-value, i.e , it has the highest

confidence metric to support the decision. We will illustrate the pro-

cess using the distribution of the p-values for SNR = 0 case, for the

setup described in Results section. The distribution of p-values for the

ensemble of tests is plotted in figure 2. The uniformity of the p-values

under the null hypothesis is clearly seen, also the distribution under

the alternative is highly skewed towards 0. The level of significance

α to reject the null hypothesis is easily noted to be p-value = α. We

will calculate a second order P-value defined as the upper tail integral

of the alternate p-value distribution and threshold it at level β. Note

that this differs from conventional p-value use in that the threshold

depends via β on the distribution under the alternate hypothesis. After

these rejection regions have been defined, the remaining range of p-

values is subject to a randomized test (see Chp.3 , Lehmann [14]

for a review of randomized testing). This test randomly decides the

outcome after normalizing with a predetermined prior distribution of

the two hypothesis in the randomization region. The Kolmogorov

Smirnov test, Anderson-Darling test e.t.c are individually sensitive

to changes only in certain regions of the distribution and sacrifice

high local power. in order to attain medium power over the complete

support of the c.d.f. In contrast, the Φ-Divergence tests have been

designed to be selective to changes in different regions of the c.d.f,

and this selectivity is controlled via the tuning parameter s. Hence, the

ensemble demonstrates a rake like property by being highly sensitive

to changes over the complete support of the c.d.f. Thus, the Ensemble

Goodness-of Fit (EG) test based on Φ-Divergences is implemented

as follows

I Training phase: Calculate the distribution of p-values of all the

test statistics under Null and Alternate hypotheses. Calculate the

rejection region and the randomization region.

II Test Phase: For the test sample, obtain test statistics for each test

in the ensemble, and the corresponding p-values.

III If the test p-value falls within a rejection region, pick the

corresponding hypothesis.

IV Otherwise, randomly pick the hypothesis using the prior distri-

bution and the magnitude of p-value.

V If any test rejects the null hypothesis, then the EP test decides

in favor of H1.

The consistently superior performance of this test is shown via

experimetal simulations in section V.

V. RESULTS

We consider a setup that consists of a single primary user in a

frequency flat fading environment with a block transmission/reception

of size T symbols per block. The primary transmitter and the

secondary receiver have 2 antennas each, i.e, NT , NR = 2. Thus the

test size is N = NR × T complex samples. Quadrature Phase Shift

Keying modulation is employed and the noise is circularly complex

gaussian with a spatial correlation coefficient of 0.2 between the two

antennas. At the initiation of the testing period in the absence of

the primary signal, a sequence of training samples is obtained with

a duration of N = 100 complex samples. These training samples

are used to estimate the distribution of the test samples under the

null hypothesis using a gaussian kernel. After the training phase,

each goodness-of-fit test statistic is evaluated using equation (10).

Also, the corresponding p-value is calculated using the distribution

of the test statistic that is approximated with high accuracy using the

Noe recursion relations [7], [15]. Only the p-values are used in later

processing and act as the summary statistic. For individual goodness-

of-fit tests, the level of significance α for the test is decided a
priori, that corresponds to the probability of falsely rejecting the null

hypothesis (PFA). If the p-value is less than α, the null hypothesis

is rejected.

A. Ensemble Goodness-of Fit (EG) test based on Φ-Divergences

The EG test thresholds are implemented as per the algorithm de-

scribed in Section IV-A for the following specifications. The ensem-

ble consists of 7 Φ-divergence tests in addition to the Kolmogorov-

Smirnov test for s = −1,−0.5, 0, 0.5, 1, 1, 5, 2. This ensemble is

found to comprehensively improve on the performance of each

individual test, including the KS test, but is not the only possible

configuration. Any number of tests can be chosen to form the

ensemble. The performance of the Ensemble Goodness-of-Fit test

is shown in figure 3 for a test sample size of N = 50, i.e, the

received block size T = 25. The level of significance for Probability

of False Alarm is set as α = 0.05 and the second order threshold

for Probability of Missed Detection is set to be β = 0.1 using the

method described in Section IV-A. The p-value corresponding to β
is calculated empirically for each SNR level and noise distribution.

The interim region is setup as the randomized testing region. Figure

(3a) and figure (3d) plot the PD and PFA performance in presence

of Gaussian noise. The Signal-to-Noise Ratio is varied from -12 dB

to 0 dB. As the noise realization for the energy detector follows the

model exactly, its performance is better than that of the goodness-of-

fit tests. Also, the EG test uniformly outperforms the KS test alone.

This behaviour is because of the rake like selectivity property of

the test mentioned in Section IV-A, and can be seen through all

operating conditions. Thus, the EG test is consistently upper bounds

the performance of the KS test. Figure (3b) and figure (3e) plot the

PD and PFA performance in presence of Middleton Class A noise

mixture distribution. The Middleton noise has a Γ = 0.5 at both

antennas where Γ controls the ratio of the Gaussian noise component

to the Non-Gaussian noise component in the mixture distribution. For

such a mixture with a dominant Gaussian noise, the power of the GoF

as measured by the PD is now better than that for Gaussian noise
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Fig. 3: Performance of the various tests for test size = 50. Fig 3a : PD for Gaussian noise, Fig 3b : PD for Non-Gaussian noise with Γ = 0.5
, Fig 3d : PFA for Gaussian noise, Fig 3e : PFA for non-Gaussian noise, Fig 3f : PFA for Non-Gaussian noise with Γ = 0.1

alone, and matches that of the Energy detector at SNR > −4 dB.

Another critical point to note here is the false alarm events, given

by PFA, are significantly higher for the energy detector. Thus the

design parameters are violated for the ED test while the EG test and

the KS test still satisfy the PFA design constraints.

VI. CONCLUSION

We have shown that nonparametric goodness-of-fit tests show ro-

bust performance under non-gaussian noise in contrast to parametric

tests like the energy detector. A systematic approach to design a

nonparametric test for the particular set of alternative hypotheses

is proposed via using the Φ-divergence based GoF tests for a

tuning parameter s. Also, the Ensemble GoF test that comprises

of these Φ-divergence tests is shown through extensive simulations

to consistently outperform the individual GoF tests, including the

Kolmogorov-Smirnov test.
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