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ABSTRACT

In this work, we study the eigen-structure of the data covari-

ance matrix in an asynchronous CDMA system. Our results

reveal the joint effect of spreading codes and power control on

warp converging Wiener filters. We further provide sugges-

tions on spreading code selection and power control strategy

in CDMA system design, where stable and predictable early

convergence of the reduced-rank conjugate gradient Wiener

filter (RRCG-WF) based multiuser detection (MUD) can be

obtained.

1. INTRODUCTION

Wiener filter is widely used in multiuser detection as the op-

timum linear MMSE detector. For instance in a CDMA sys-

tem, measurement y is a vector of chip-rate matched filtered

and sampled data containing information from all active user-

s; matrix Ryy � yyT is the correlation matrix of such a data

vector; and vector s represents the spreading code of a de-

sired user. The Wiener filtering operation is then given by

sTR−1
yyy. However, the dimensionality in practical system

often makes the direct evaluation of such filtering operation

involving a large-size matrix inversion undesirable. Accord-

ingly, reduced-rank schemes are introduced to alleviate the

computational load.

In [1, 2], we have discovered and proved the conditions on

the warp convergence of the RRCG-WF. It has been shown

that in Gold code based synchronous CDMA systems with

perfect power control, early convergence can be achieved in

Lr = 2 ∼ 4 steps, where Lr is independent of the user num-

ber K and the code spreading length N . We have also proved

that the filter rank Lr is related to the number of distinct non-

zero eigenvalues of the data covariance matrix Ryy, as well

as the code set Gram matrix GSS under perfect power con-

trol. In a subsequent work [3], we have analytically derived

the number of distinct eigenvalues for some commonly used

spreading codes under synchronous scenario.

In this work, we extend our analysis of the code set Gram

matrix to asynchronous case, a more practically encountered

situation. Our study is focused on the so-called preferred set

of m-sequences with preferred three-valued cross-correlation

spectra. Instead of finding the exact number of distinct eigen-

values for the data covariance matrix, we are interested in de-

termining the number of distinct clusters of eigenvalues. It

is shown that advanced power control strategy can be used to

bound the eigenvalues into clusters, hence enabling the warp

convergence. We further conclude that for properly select-

ed spreading codes and power control parameters, stable and

predictable early convergence can be achieved for RRCG-WF

based MUD even in asynchronous CDMA systems.

The conjugate gradient method is an iterative method

for solving a linear system of equation Ax = b, where A
denotes an N × N symmetric and positive definite matrix.

Specifically, our derivation is based on the following Theo-

rems [4, 5, 6], connecting convergence of iterative solution to

Ax = b with matrix A’s eigenvalues.

Theorem 1 (Convergence): If A has eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λN , starting from x0 for the iterative solution

xk+1, we have that

‖ xk+1 − x∗ ‖2A ≤
(
λN−k − λ1

λN−k + λ1

)2

‖ x0 − x∗ ‖2A . (1)

Here the weighted norm ‖ · ‖2A is with respect to A as defined

by ‖ z ‖2A= zTAz.

Theorem 1 tells that for a small value of (λN−k −
λ1)/(λN−k + λ1), the CG iteration will provide a good

approximate to the solution after only k + 1 steps. An exten-

sion of this argument leads to a more interesting observation,

upon which our results are based.

• It is generally true that if the eigenvalues occur in k dis-

tinct clusters, the CG iterates will approximately solve

the problem after k steps.

Theorem 2 (Gersgorim): Let A = [aij ] denotes an arbi-

trary N × N matrix, and let R′
i(A) ≡ ∑N

j=1,j �=i |aij |, (for

1 ≤ i ≤ N , denote the deleted absolute row sums of A. Then

all the eigenvalues of A are located in the union of N discs:

N⋃
i=1

{
λ ∈ C : |λ− aii| ≤ R′

i(A)
} ≡ G(A). (2)

2997978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Furthermore, if a union of k of these N discs forms a connect-

ed region that is disjoint from all the remaining N − k discs,

then there are precisely k eigenvalues of A in this region.

For Asynchronous CDMA systems, the direct calculation

of the eigenvalues for the code set Gram matrix is almost im-

possible. But, it is possible to get an approximate range of the

eigenvalues based on Theorem 2. Theorem 1 further links this

approximate eigenvalue bound to an approximate step num-

ber that CG iteration converges.

2. EIGEN-STRUCTURE ANALYSIS OF THE DATA
COVARIANCE MATRIX

When a set of K spreading codes of length N (assuming K ≤
N ) is chosen, we can construct a N × K code set matrix

S = [s1 s2 . . . sK ], and further form the K×K code set Gram

matrix GSS = STS. Notice that for asynchronous CDMA

systems, {sk}Kk=1 represent shifted versions of the spreading

codes based on different time delays of multiple users. Now

we study in detail the spectrum property of this matrix, and

the number of steps required for the RRCG-WF to converge,

or approximately converge, to the full-rank Wiener filter.

2.1. Cross-correlation Spectrum of Connected Sets of m-
sequences
If linear m-sequences u and v are generated from differen-

t primitive polynomials, their cross-correlation function (C-

CF) θu,v produces at least three values. While there are sets

of m-sequences available that produce only three values for

the CCF. The property of m-sequences given below exhibits

specific decimation which produces exactly three-valued CCF

except when n is a power of 2. This result is a composite one,

as various parts of it were proved by Gold, Kasami, Solomon,

and Welch [8].

• Cross-Spectrum Property: Let u and v denote m-

sequences of period N = 2n − 1. If v = u[q],
where either q = 2k − 1 or q = 22k − 2k + 1, and

if e = gcd(n, k) is such that n/e is odd, then the

spectrum of θu,v is three valued and,

−1 + 2(n+e)/2 occurs 2n−e−1 + 2(n−e−2)/2 times

−1 occurs 2n − 2n−e − 1 times

−1− 2(n+e)/2 occurs 2n−e−1 − 2(n−e−2)/2 times

(Notice that in most instances, small values of e are

desirable. If we wish to have e = 1 then clearly n must

be odd in order that n/e be odd.)

CCFs taking on these three values only are the so-called

preferred three-valued CCFs, and the corresponding pair of

m-sequences is called a preferred pair of m-sequences. A

connected set of m-sequences is a collection of m-sequences

which has the property that each pair in the collection is a pre-

ferred pair. Our following derivation is restricted to connected

sets of m-sequences. While our results can be generalized to

larger sets of periodic sequences that have good periodic cor-

relation properties (with small cross-correlations). Such se-

quences can be constructed from the m-sequence, including

the Gold sequences, the Gold-like and Dual-BCH sequences,

and the Kasami sequences.

2.2. Eigen-structure Analysis of the Code Set Gramian
Based on Theorem 1 (G-disc), all the eigenvalues of matrix

GSS are located in the union of K discs, centered at g11
through gKK , with gij (1 ≤ i, j ≤ K) denoting the element

on the i-th row and j-th column of matrix GSS. Since the

diagonal elements are the same for matrix GSS (all 1’s if nor-

malized codes are in use), all the eigenvalues then fall into a

single disc:

{
λ ∈ C : |λ− 1| ≤ R(GSS)

} ≡ G(GSS),

where R(GSS) represents the radius of the G-disc. Here

we have R(GSS) = maxK
i=1

[
Ri(GSS)

]
, with Ri(GSS) ≡∑K

j=1,j �=i |gij | denoting the i-th deleted absolute row sums of

GSS based on Theorem 1. According to the three-value prop-

erty of the m-sequences, we are able to calculate an asymptot-

ic radius of the G-disc, based on the assumption that the CCFs

in the code set Gramian GSS are evenly distributed according

to the CCF spectra given by the cross-spectrum property.

Specifically, we obtain the distribution of |gij | shown be-

low (for a given number of i with 1 ≤ j ≤ K and j �= i).

2(n+e)/2− 1

2n − 1
∼ occurs

2n−e−1+ 2(n−e−2)/2

2n − 1
(K−1) times

1

2n − 1
∼ occurs

2n − 2n−e − 1

2n − 1
(K−1) times

2(n+e)/2+ 1

2n − 1
∼ occurs

2n−e−1− 2(n−e−2)/2

2n − 1
(K−1) times

Here ∼ denotes “approximately”. Consequently, we have,

R(GSS) ≈ meanKi=1

[
Ri(GSS)

]

≈ 2(3n−e)/2 + 2n − 2n−e − 2(n−e)/2 − 1

(2n − 1)2
× (K − 1)

≈ K − 1

2(n+e)/2
. (3)

Unfortunately the results at this step dose not provide

much useful information as all the eigenvalues fall into the

same G-disc. However, it dose provide a lead on how to

approximately bound the eigenvalues based on the spectrum

of the CCF. It will be discussed in the next sub-section that

the eigenvalues can be further bounded into several clusters

with the help of advanced power control strategy.
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2.3. Eigen-Structure Analysis of the Power controlled
Code Set Gramian
Referring to [7], an implicit assumption for the conventional

power control strategy is that the system under study is for

one class of service. This assumption can be extended to al-

low multiple classes of services to be accommodated simul-

taneously, which may offer different bit rates, or different bit

error rates.

Let us assume that the system is designed to provide

J classes of services, which results in J levels of the re-

ceived power pj . Specifically, we assume that for j =
1, 2, . . . , J , there are Kj users within class j with received

power σ2
j (K1 + K2 + · · · + KJ = K). Matrix Σ =

diag{σ1, σ2, . . . , σK} contains the users’ amplitudes. Based

on the fact that matrix SΣ2ST and matrix Σ2STS have the

same non-zero eigenvalues, we then try to determine the

eigen-structure of the power scaled Gram matrix Σ2GSS.

For J classes of services, we have J distinct power level-

s corresponding to the diagonal elements of matrix Σ2GSS.

Referring to the Gersgorim theorem, the eigenvalues of this

matrix are located in the union of J discs centered at σ2
j , for

j = 1, 2, . . . , J . The corresponding radius for the j-th G-

circle can be approximately calculated as follows:

Rj(Σ
2GSS)

≈ 2(3n−e)/2 + 2n − 2(n−e)/2 + 2n−e − 1

(2n − 1)(2n + 2n−e+1 − 1)
×Kj × σ2

j

≈ Kj

2(n+e)/2 + 2(n−e+2)/2
× σ2

j . (4)

It can be observed that the key factors for the bound of

eigenvalues are the number of users Kj’s, and the power lev-

els σ2
j ’s. For small Kj’s and distinctly separated σ2

j ’s, the

eigenvalues of matrix Σ2GSS can be nicely bounded into J
clusters, which results in an approximate early convergence

of J steps for the RRCG-WF of the CDMA system.

Consequently, the proposed power control strategy en-

abling fast converging RRCG-WF solutions in asynchronous

CDMA systems is given by the following procedures:

• Determine the number of classes J and number of users

Kj (for j = 1, 2, . . . , J) within each class; set a base

power σ2 and assume that σ2
j = ρjσ

2 with ρ1 = 1; and

calculate the constant t = 2(n+e)/2+2(n−e+2)/2 based

on the spreading codes used in the system.

• Sequentially calculate the minimum required value of

ρj , for j = 2, . . . , J , according to Eq. (5), which is the

constraint that the G-discs from different classes do not

overlap with each other, and choose a relatively small

and convenient value for ρj .

ρj >
t+Kj−1

t−Kj
ρj−1 (5)

The following Fig. 1 shows a three-cluster distribution of

eigenvalues for the data covariance matrix under a typical

three-level power control setting. We have a connected set

of length N = 63 m-code with n = 6 and e = 2. A J = 3
group power control strategy is applied. There are 8 users

within group-1 with power σ2; 4 users within group-2 with

power 2σ2; and 2 users within group-3 with power 4σ2, re-

spectively. And the radius of the G-discs turns out to be σ2/3
for all three groups. As can be seen in Fig. 1, the blue circles

represent the calculated bound, and the red starts represent the

eigenvalues of a specific trial.

Fig. 1. Three clusters of eigenvalues bounded by the power

control strategy.

3. NUMERICAL EXAMPLES

Computer generated simulations are provided to demonstrate

the warp convergence of the RRCG-WF in asynchronous CD-

MA applications with either connected set of m-sequences, or

Gold sequences.
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Fig. 2. BER Performance of the RRCG-WF in m-sequence

(of a connected set) based asynchronous CDMA applications.

For the first simulation example, we assume to have K =
30 active users, each using a distinct length N = 63 m-code

chosen from a connected set of m-sequences (with n = 6 and

e = 2). Case 1 (red lines) is for a J = 3 group power control

strategy, which results in users 1 through 10 with SNR1 =
0dB, users 11 through 20 with SNR2 = 4dB, and users 21
through 30 with SNR3 = 4dB. On the other hand, case 2

(blue lines) is for a conventional asynchronous CDMA system

with a common SNR = 10dB for all 30 users. As can be seen
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in Fig. 2, a warp convergence is achieved in just 2 ∼ 3 steps

for the group-wise power-controlled scenario, while 6 steps

are needed for the conventional system.

Our second simulation example is for a set of K = 15
users using length N = 31 Gold codes. Here, case 1 (red

lines) follows a J = 3 group-wise power control strategy,

where users 1 through 5 are with SNR1 = 2dB, users 6
through 10 are with SNR2 = 6dB, and users 11 through 15
are with SNR3 = 9dB. Case 2 (blue lines) is for a conven-

tional power-controlled asynchronous CDMA system with a

common SNR = 6dB. The simulation results shown in Fig. 3

is similar to the m-codes results shown in Fig. 2, where warp

convergence in 3 steps is obtained for the power controlled

asynchronous CDMA system, and 5 steps for the convention-

al asynchronous CDMA system.
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Fig. 3. BER Performance of the RRCG-WF in Gold code

based asynchronous CDMA applications.

It should be pointed out that the different performance on

convergency is related to the choice of spreading codes along

with group power control, which results in different periodic

correlation properties. The simulation results also show that

even for the conventional single-power-level asynchronous

CDMA system, early convergence in just a few more steps

can be obtained. It also reminds us that the Convergence the-

orem together with the Gersgorim theorem only provide an

approximate upper bound for the convergence performance

of the RRCG-WF.

4. CONCLUSION

We have shown in this paper that for a general asynchronous

CDMA system, spreading codes and power control strategies

have joint effect on the eigen-structure of the data covariance

matrix. And such eigen-structure directly control the warp

convergence of the RRCG-WF for the system. For proper-

ly chosen spreading codes with small cross-correlations, and

power control strategies with distinct power levels, stable and

predictable early convergence can be obtained for the RRCG-

WF based MUD of the CDMA system. This property may

not be well recognized in existing literature, while here we

show its important implications in designing fast converging

solutions to CDMA system, as well as other signal processing

and communication problems.
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