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ABSTRACT

A sensitive receiver operation in multi-access reception is to detect
the presence of training signals and identify sources from which the
signals are sent, with a certain physical delay and center frequency.
This is typically a sequential search, where the receiver tests the
presence of specific signals and then acquires synchronization pa-
rameters (delays, Dopplers), for each component. In this paper, we
develop an optimal compressive multichannel sampling (CMS) ar-
chitecture, the output samples of which are fed to the proposed Spar-
sity Regularized (SR) Generalized Likelihood Ratio Test (GLRT). It
is shown that SR-GLRT using the optimal sampling scheme exhibits
better performance than conventional compressed sensing structure,
and furthermore effectively scales down the storage requirement and
complexity with greater flexibility than conventional architectures.

Index Terms— Multichannel sampling, compressed sensing.

1. INTRODUCTION

One of the most critical tasks of many receivers in a multi-access
channel, referred to as link acquisition, is that of detecting the pres-
ence of any signals, and identifying the link parameters (e.g., delays,
Doppler) of an unknown subset I out of I possible sources. Similar
to [2, 3], the active sources transmit distinct preambles φi(t), i ∈ I
to a receiver, whose task is to process the received signal x(t) and
test for the presence of any specific component active in the link.
This is in general a complicated hypothesis testing problem, where
existing acquisition algorithms usually acquire a sufficient statistic
by directly sampling (DS) x(t) at (or above) the Nyquist rate for es-
timation and detection. Another prevalent choice is to facilitate the
search of both the active set I and the link parameters by comparing
the magnitudes of the match filtered (MF) outputs of the signal x(t).

Recently, there have been advances in exploiting sparsity to solve
signal detection, active user identification and parameter estimation,
to replace the DS or MF approaches. For instance, [2–4] assume the
presence of signals and deal with identification of the users and/or
estimation of signal parameters by creating a dictionary from the
known templates φi(t) of the signal and viewing the signal x(t) as a
sparse linear combination of the elements inside the dictionary. On
the other hand, [5–8] propose detection schemes using generic com-
pressed measurements from a discrete model without resolving the
system parameters. In these papers, Doppler and delays are not ex-
plicitly considered, and also the acquisition structure, from the ana-
log signal to the digital measurements, is not explicitly optimized.

In this paper, we propose an acquisition algorithm using a Sparsity
Regularized (SR) GLRT with an optimal sampling structure, and fur-
ther assess its performance against traditional designs in compressed
sensing as well as MF. Our contribution compared to [2,3,5–8] is in
the design of the sampling structure that maximizes the weighted av-
erage Kullback-Leibler (KL) distance of the hypotheses in the test.

2. SPARSE MODEL-BASED LINK ACQUISITION

During the training phase a certain user from the active set i ∈ I
transmits a specific preamble φi(t) to the destination, and the obser-
vation at the receiver can be written as

x(t) =
X
i∈I

RX
r=1

hi,rφi(t− τi,r)e
iωi,rt + v(t), (1)

where 0 ≤ τi,r ≤ τmax is an unknown delay of the ith user in the
rth multipath bounded by the delay spread τmax, |ωi,r| ≤ ωmax is
the Doppler frequency bounded by the Doppler spread ωmax, and
hi,r is the unknown channel fade. We further assume that the max-
imum multipath order R is known and the noise component v(t) is
Gaussian with autocorrelation E{v(t)v∗(s)} = σ2δ(t− s).

Here, we approximate τi,r ≈ qi,rΔτ and ωi,r ≈ ki,rΔω for
some integers qi,r and ki,r with a certain resolution Δτ = τmax/Q,
Δω = ωmax/K. We further introduce the triple-indexed coefficient

αi,k,q =
X
j∈I

hj,rδ[i− j]δ[k − kj,r]δ[q − qj,r] (2)

to indicate whether the ith user is transmitting at a certain delay τ =
qΔτ with a certain carrier offset ω = kΔω. Denoting φi,k,q(t) �
φi(t−qΔτ)eikΔωt as the MF template with Q = {0, 1, · · · , Q−1}
and K = {−K, · · · ,K}, the signal is approximately expressed as

x(t) =
IX
i=1

X
k∈K

X
q∈Q

αi,k,qφi,k,q(t) + v(t). (3)

From (2), we can see that the link parameters are embedded in the
sparse coefficients αi,k,q’s, including delays τi,r = qi,rΔτ , Doppler
frequencies ωi,r = ki,rΔω and the active users i ∈ I. We define
the active links, or the delay-Doppler pairs, for the ith user as

Ai �
˘
(k, q) : |αi,k,q|2 > 0, k ∈ K, q ∈ Q¯

. (4)

If a user is not transmitting i /∈ I, then the set is empty Ai = ∅ and
no components are present |Ai| = 0. With Ai defined above, the
goal of the link acquisition is to identify i) the existence of any signal
αi,k,q �= 0 in the observation; ii) the set of active users indicated by
the indices i with a non-trivial link parameter set Ai �= ∅; iii) the
delay-Doppler pairs for active users Ai ⊆ K ×Q, i ∈ I.

3. COMPRESSIVE ACQUISITION

The first stage of our scheme, whose task is to collect compressive
measurements like in [2–8], can be viewed as the general front-end
typical of sub-Nyquist or Finite Rate of Innovation (FRI) sampling
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[1, 9], consisting of a P -channel filter-bank that computes

cp[n] � 〈x(t), ψp(t− nD)〉 , p = 1, · · · , P, (5)

where D is the shift of observation window. We call this archi-
tecture the Compressive Multichannel Sampling (CMS) scheme and
the streaming samples {cp[n]}p=1,··· ,P

n∈Z
are used for link acquisition.

However, due to the space limitation, we consider only one window
of samples {cp}Pp=1 in this paper for acquisition. For a more com-
prehensive discussions on the CMS structure, readers are referred to
the the extension of this work [10], where the sequential acquisition
algorithm along with a comprehensive analysis of the complexity
vis-à-vis the state-of-the-art is elaborated. In this paper, we sim-
ply compare the acquisition performance using the block of samples
{cp}Pp=1 against those obtained by conventional random projections
in compressed sensing and those by simple matched filtering.

To facilitate notations in derivations, we refer to a triple index
(i, k, q) as the ((i − 1)|K||Q| + (k − 1)|Q| + q)th element and
the vector α with (α)(i,k,q) = αi,k,q . In this work, we consider

the use of sampling kernels ψp(t) that are linear combinations of
the matched filters. The following theorem specifies the samples
c � [c1, · · · , cP ]T in relation to α.

Theorem 1. Usingψp(t) =
PI
i=1

P
k∈K

P
q∈Q bp,(i,k,q)φi,k,q(t),

p = 1, · · · , P as sampling kernels, the samples c are expressed as

c = BMα + v. (6)

1. B is a P × I|K||Q| matrix defined as [B]p,(i,k,q) � bp,(i,k,q);

2. M is a matrix with the [(i′, k′, q′), (i, k, q)]th entry given by

Rφi′,k′,q′φi,k,q = e−jkΔωq
′ΔτR

(k−k′)
φi′ ,φi

ˆ
(q′ − q)Δτ

˜
,

where R(k−k′)
φi′ ,φi

(Δt) is the ambiguity function

R
(k−k′)
φi′ ,φi

(Δt) =

Z
φ∗
i′(t)φi(t− Δt)ei(k−k

′)Δωtdt. (7)

3. The noise covariance is Rvv = E(vvH) = σ2BMBH .

Proof. The proof is omitted because it is tedious but straightforward.

The description in this paper considers an analog front-end that
aims at reducing the samples processed per observation window. In
practical settings, this filterbank (similar to that used in [9]) can be
implemented in an analog circuit only for some specific φi(t). In
other cases, an equivalent digital filterbank operating at the Nyquist
rate is the only viable implementation. We note, however, that even
if the purpose of the front-end is not a reduced rate analog-to-digital
conversion, this stage is still useful as a data compressor to cre-
ate a more manageable record for the following estimation/detection
stage. This notion generalizes and improves what was used or im-
plied in other SR-GLRT works [2, 3, 8]. The freedom in choosing
B also allows us to optimize link acquisition performance, which is
discussed in details in Section 5. Now we define the full support set

A � {(i, k, q) : (k, q) ∈ Ai, i ∈ I} . (8)

To reflect the link vector as a function of the link parameter set A,
we re-write αA � α and refer to this vector as the true link vector.

4. SPARSITY REGULARIZED GLRT (SR-GLRT)

The SR-GLRT scheme tackles the link acquisition problem exploit-
ing the compressive observation model given in Theorem 1. The
goal of link acquisition is to discriminate the true pattern A against
all possible patterns S �= A as a hypothesis testing problem

HS : c = BMαS + v (9)

over all possible S’s, where S = ∅ indicates the null hypothesis.

The link acquisition is thus to detect the set S for all possible
HS ’s with αS and the noise level σ2 being nuisance. It is well
known that the traditional GLRT is to find the set S maximizing

P
`HS |αS , σ

2´
=

1

πPσ2P |Rψψ|e
− 1
σ2 ‖c−BMαS‖2

R
−1
ψψ

in the presence of unknown αS (i.e., amplitudes and S) and σ2.
Notorious problems are that if the size of the support |A| is unknown,
the GLRT tends to over-parametrize, while the problem becomes
combinatorial and NP-hard if |A| is known but large. In [2, 3], the
authors proposed a sparse formulation

bα � arg min
α

‖c − BMα‖2

R−1
ψψ

+ λ · f(α), (10)

where λ is a regularization parameter and f(α) is the sparsity con-
straint. If the f(α) = ‖·‖0, the problem is usually solved via greedy
methods such as orthogonal matching pursuit (OMP) etc. A relax-
ation of (10) is by setting f(α) = ‖·‖1. The relaxation is analogous
to the Least Absolute Shrinkage and Selection Operator (LASSO) in
statistics, which can be solved by convex optimization. The set of

active users bI and parameters bAi’s can be extracted from the esti-
mated link vector bα to give the soft estimate of the link vector bα

bA
with bA =

n
(i, k, q) : (k, q) ∈ bAi, i ∈ bIo

and the noise variance

bσ2
bA = ‖c − BMbα

bA‖2

R−1
ψψ

/P [11]. Finally, the likelihood for hy-

pothesis H
bA is P

`H
bA|bα

bA, bσ2
bA
´ ∝ 1/

‚‚c − BMbα
bA
‚‚2P

R−1
ψψ

.

The hypothesis H
bA obtained above is inferred to be the true hy-

pothesis given S = bA �= ∅. Thus, signals are detected by compar-
ing the likelihoods between H

bA and H∅ , which is the foremost task
of link acquisition. The likelihood ratio test is performed as

η �
P

`H
bA|bα

bA, bσ2
bA
´

P
`H∅ |bσ2

∅

´ =
‖c‖2P

R−1
ψψ‚‚c − BMbα

bA
‚‚2P

R−1
ψψ

> η0. (11)

The signal is declared present H
bA when η > η0 ≥ 1 so that the

receiver knows that certain signal components have been captured in
the observation. Then, from the link vector bα

bA, we can extract the

delay-Doppler pairs bτi,r = qΔτ , bωi,r = kΔω with (k, q) ∈ bAi.

5. OPTIMAL SAMPLING KERNEL

In this section, we design the sampling kernels {ψp(t)}Pp=1 by op-
timizing bp,(i,k,q)’s to maximize the weighted average Kullback-
Leibler (KL) distances between any HS ’s in (9). The motivation
comes from Stein’s lemma, stating that the ability to identify distinct
supports S and S ′ depends on the pair-wise KL distance between

HS and HS′ . Introducing G (B) � MHBH
`
BMBH

´−1
BM,
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the pair-wise KL distance is given from [12] as

D (HS‖HS′) =
(αS − αS′)H G (B) (αS − αS′)

σ2
. (12)

It is possible that specific choices of P and the Gram matrix M lead
to indistinguishable sparsity patterns D (HS‖HS′) = 0. A non-zero
pair-wise KL distance for any S �= S ′ requires spark (G (B)) ≥
|S| + |S ′|, where spark (·) is the Kruskal rank of a matrix. In other
words, the design of B cannot cure intrinsic problems caused by the
Gram matrix M or the choice of P .

Thus, instead of looking at the pair-wise KL distance, we pro-
pose to use the average KL distance as the metric to optimize the
sampling kernels1. To define the average KL distance, we associate
each distinct pair of supports S and S ′ with the weight γS,S′ . Fur-
thermore, we associate each nuisance amplitude αS a continuous
weighting function P (αS) for any S. Then the weighted average of
all pair-wise KL distances is

D =
X
S

X
S′ �=S

γS,S′

ZZ
P (αS)P (αS′)D (HS‖HS′) dαSdαS′ .

If we use uniform weights γS,S′ for all S,S ′, and weighting func-
tions P (αS) =

Q
(i,k,q)∈S P (αi,k,q) over the amplitudes withR

αSP (αS)dαS = 0 and
R |αi,k,q|2P (αi,k,q)dαi,k,q = constant,

the average KL distance D with proper normalization is equal to

D =
1

σ2
Tr

»
MHBH

“
BMBH

”−1

BM

–
. (13)

Finally, given P and M, we propose an optimal B that maximizes
D if there is a unique solution; when there are multiple solutions that
yield identical D, we further choose B that gives the least occurrence
of events D (HS‖HS′) = 0 from the feasible set. We use the results
in the following lemma for our optimization.

Lemma 1. (Ratio Trace Maximization [13]) Given two L × L
positive semi-definite matrices S and G, and an arbitrary L × P
full column rank matrix W, the ratio trace problem is formulated as

Wopt = arg max
W

Tr

»“
WHSW

”−1

WHGW

–
. (14)

The optimal Wopt = [wopt
1 , · · · ,wopt

P ] is given by the generalized
eigenvectors wopt

p , p = 1, · · · , P corresponding to P largest gen-
eralized eigenvalues of the pair (S,G) with P ≤ rank(S).

Theorem 2. Let M = UΣUH , i.e. Σ is the eigenvalue matrix in
descending order and U is the eigenvector matrix of M. Denote the
following set of P principal eigenvectors with P ≤ rank(M)

U =
n
UP = [u1, · · · ,uP ] : (15)

M = UΣUH ,U =
ˆ
u1, · · · ,uI|K||Q|

˜ o
(16)

and let ΞP be an arbitrary non-singular P × P matrix. When
the principal eigen-vectors are unique |U| = 1, the matrix B =
ΞPUH

P is chosen uniquely to maximize the average KL distance
D. When the eigenvectors are not unique |U| > 1, we choosebUP = max

UP∈U
spark

`
UH
P

´
to maximize the average KL distance

and minimize the occurrence of events D (HS‖HS′) = 0.

1Note that the computation of the weights is done offline, and does not

add complexity to the online processing.

Proof. See Appendix A.

An extreme example of |U| > 1 is when {φi,k,q(t)}k∈K,q∈Q
i=1,··· ,I

form an orthogonal basis such that M = I. In this case, Theorem
2 is similar to the criterion in compressed sensing that aims to find
a matrix with as large sspark(UH

P ) as possible that guarantees the
recovery of any s/2-sparse vectors (assuming s is even).

6. NUMERICAL RESULTS

In this section, we compare the SR-GLRT performances with the
CMS architecture using our optimal design versus other random pro-
jection schemes in compressed sensing, and benchmark against an
I|K||Q|-channel2 exhaustive MF bank {φi,k,q(t)}i∈I,k∈K,q∈Q fol-
lowed by a peak picking stage. Specifically, the simulation uses a
P -channel CMS structure with P = 100 to acquire the samples c
and solve the SR-GLRT using Orthogonal Matching Pursuit (OMP)
for the sparse recovery. We simulate a multi-access channel with
I = 10 users, |I| = 4 out of which are active. We use a length-255
preamble φi(t) =

P254
m=0 si[m]g(t − mT ) with quasi-orthogonal

BPSK symbols si[m] of unit power and g(t) = sinc(t/T ).
We simulate underspread channel conditions with delay spread

τmax = 4T and Doppler spread ωmax = (2π/T ) × 5 · 10−3. This
frequency offset is comparable to a 5 kHz shift when T = 1μs.
We model τi,r as uniform random variables τi,r ∼ U(0, τmax),
and similarly ωi,r ∼ U(−ωmax, ωmax), whereas the fading coef-
ficients R = 2 are complex Gaussian hi,r ∼ CN `

0, 1/(|I|R)
´

with E(hi,rh
∗
i′,r′) = 1/(|I|R)δ[i− i′]δ[r− r′]. We set the acquisi-

tion resolution to be Δτ = T/2 and Δω = ωmax/5, and, therefore
Q = {0, · · · , 7} and K = {−5, · · · , 5}.

The Receiver Operating Characteristics (ROC) curve and the

source identification rate P (bI = I) in Fig. 1 show that the optimal
sampling kernel, denoted by CMS-KL, exhibits a better performance
than random designs of B using matrices whose entries are Gaussian
(CMS-G), Bernoulli (CMS-B), or randomly selected rows of a DFT
matrix (CMS-F). It can also be observed from Fig. 2 that the root
mean squared error (RMSE) of the delay and Doppler estimates are
improved. Furthermore, the SR-GLRT using the optimal design ef-
fectively scales down the number of measurements needed for this
task than MF (i.e., P = 100 � I|K||Q| = 880) and provides su-
perior performance to the conventional MF approach at reasonable
SNR, because it better decorrelates the measurements and denoise
the signal rather than simply picking the peak.

7. CONCLUSIONS

In this paper we evaluated the performance of the SR-GLRT using
the proposed optimal CMS structure, and compared it with random
compressed sensing designs and the MF approach. It is shown that
the optimal structure outperforms other random designs of conven-
tional compressed sensing matrices, and furthermore, the SR-GLRT
effectively reduces the requirement for computations and storage by
handling less data while improving upon the MF approach.

A. PROOF OF THEOREM 2

By analogy with Lemma 1, we have S = M and G = MMH in

(13). Let B �
ˆ
b1 · · · bP

˜H
, where bp is a length-I|K||Q|

2In practice, matched filters across the delay q ∈ Q are implemented in

time domain so the |Q|-channels are not strictly necessary, but this does not

change the fact that SR-GLRT greatly reduces the required samples.
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Fig. 1. ROC curve at SNR=−8 dB and successful user identification

rate P (bI = I) of the 100-channel CMS receiver, against different

random designs of B and the MF using I|K||Q| = 880 templates.

column vector such that bp = wp. In this setting, according to
Lemma 1, the optimal bp is chosen as the generalized eigenvec-
tor of the matrix pair (S,G) such that Mbp = λpMMHbp, with
p = 1, · · · , P and P ≤ rank(M). Using M = UΣUH and the
property UHU = I, we have

ΣUHbp = λpΣΣHUHbp, p = 1, · · · , P. (17)

If bp = up, where up is the pth column in U, then the above rela-
tionship holds for all p because uHi uj = δ[i− j]. This gives

L.H.S. : σpU
Hup = σpep, R.H.S. : λpΣΣHUHup = λpσ

2
pep,

leading to a generalized eigenvalue of λp = 1/σp, where σp > 0
is the pth eigenvalue in Σ and ep is the canonical basis with 1 in
the pth entry and 0 otherwise. Denote by ΣP and UP the principal
eigenvalue and eigenvector matrices. Then the optimal B is chosen
as B = ΞPUH

P , where ΞP is an arbitrary non-singular P × P
matrix. According to (13), this choice gives

D =Tr

0
B@ΣH

P ΞH
P Ξ−H

P| {z }
=I

Σ−1
P Ξ−1

P ΞP| {z }
=I

ΣP

1
CA =

PX
p=1

σp,

which is independent of ΞP . If the principal eigenvectors UP are
unique, the above B uniquely maximizes the average KL distance D.
This choice of B in general spreads out the individual KL distance,
while the occurence of the events D (HS‖HS′) = 0 is analyzed
below. The same reasoning also applies when UP is not unique.

Now we examine the event D (HS‖HS′) = 0. Let βS∪S′ =
(αS − αS′) be a sparse vector with |S|, |S ′| ≤ s, and s ≤ |I|R.
Substituting the matrix B = ΞPUH

P back to (12) and simplifying
the expression, the individual KL distance is

D (HS‖HS′) =
1

σ2
βHS∪S′UPΣPUH

P βS∪S′ , ∀S �= S ′

with |S|, |S ′| ≤ s. Note that βS∪S′ is a 2s-sparse vector and
D (HS‖HS′) is bounded away from zero if any 2s-sparse vectors
do not fall into the null space of the matrix UH

P . In order to mini-
mize the occurrence of the event D (HS‖HS′) = 0, it is equivalent
to maximize the Kruskal rank spark

`
UH
P

´
such that B can recover

any s-sparse vector αS with s being maximized in this process.

−10 0 10 20
10

−1

10
0

Delay RMSE

SNR

RM
SE

CMS−KL
CMS−G
CMS−B
CMS−F
MF

−10 0 10 20
10

−3

10
−2

Doppler RMSE

SNR

RM
SE

CMS−KL
CMS−G
CMS−B
CMS−F
MF

Fig. 2. Delay and Doppler estimation RMSE of the 100-channel

CMS receiver, against different random designs of B and the MF

using I|K||Q| = 880 templates.
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