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ABSTRACT

A novel construction for quasi-cyclic (QC) regular and irregular
low-density parity-check (LDPC) codes based on a modification
of the QC Progressive Edge Growth (PEG) algorithm is presented.
Edge placement of the PEG-based algorithm is enhanced by use
of the sum-product algorithm in the design of the parity-check ma-
trix. The proposed algorithm is highly flexible in block length and
rate, in particular when compared with algebraic constructions. The
codes constructed by the proposed methods are tested in the AWGN
channel and performance improvements are achieved. The pro-
posed QC-LDPC codes provide an inherent trade-off between code
performance and encoding/decoding complexity.

Index Terms— Channel coding, Low-density parity-check
codes, Iterative decoding

1. INTRODUCTION

Low-density parity-check (LDPC) codes are a class of capacity ap-
proaching codes first introduced by Gallager [1]. Key developments
leading to practical implementations of LDPC codes include the bi-
partite graph known as the Tanner graph [2] and the fact that decod-
ing with complexity linear in code length is achievable by means of
the sum-product algorithm (SPA) [3]. Irregular LDPC codes, which
have a parity-check matrix with varying row and column weights
were introduced by Luby et al. [4] and found to perform excellently.
Richardson et al. [5] then developed density evolution (DE), an an-
alytical tool for optimising the degree distribution which defines the
row and column weights of the irregular parity-check matrix.

A notable limitation of DE for codes of more practical short and
medium lengths is the assumption that the decoding neighbourhood
of a given variable node (VN) is tree-like [5]. While this assumption
is true for codes of infinite length and approximately holds for large
block length codes, at short to medium lengths it is not verified. At
these lengths short cycles found in the graph of the code have sig-
nificant negative effect on code performance as a result of their im-
pact on the independence of messages passed in SPA decoding. A
number of approaches exist which attempt to lessen the effects of
these short cycles. The concept of approximate cycle extrinsic mes-
sage degree (ACE) [6] emphasises the importance of connectivity
between short cycles in how they effect code performance. A partic-
ularly useful tool in constructing codes with excellent performance
is the progressive edge growth (PEG) algorithm [7]. This is a greedy
edge placement construction algorithm which maximises the length
of the cycle created at each edge placement. The PEG algorithm
is particularly suited to the design of LDPC codes with short block
lengths. It is flexible in length and rate and may be applied, through
modifications, to construct codes with particular beneficial structure
such as irregular repeat accumulate (IRA) codes [8] which allow ef-
ficient encoding and the PEG-Root-Check LDPC codes for the block

fading channel [9], towards which the authors contributed.
The ability to decode LDPC codes with complexity linear in

code length is due to the sparsity of the parity-check matrix. In gen-
eral the generator matrix of an LDPC code is not sparse so encod-
ing is more costly due to the required matrix multiplication. Quasi-
cyclic (QC) LDPC codes allow low-complexity encoding as well as
decoding [10]. The generator and parity-check matrices have an im-
posed structure which may be exploited such that encoding may be
performed with shift registers [11] and decoding with SPA decoder
may be further parallelised.

In [12] the PEG algorithm is used to construct QC-LDPC codes
with improved performance over random QC constructions. The
proposed algorithm, termed QC-DO-PEG, relies on the concept of
using the decoder to improve the design of the code. This concept
was developed previously in [13] for unstructured LDPC codes. This
leads leads to overall improved graph connectivity and to an im-
provement in BER performance.

The rest of this paper is structured as follows. In Section 2
we formulate the problem and provide the necessary background on
QC-LDPC codes and the PEG algorithm. In Section 3 the proposed
code design algorithm is presented and in Section 4 the simulation
results are given. Section 5 provides concluding remarks.

2. PROBLEM STATEMENT

The goal was to design cost effective LDPC codes for short block
lengths. QC-LDPC codes allow linear encoding complexity by use
of shift registers but suffer particularly at short block lengths from
short cycles. The QC-PEG algorithm uses the tree expansion of the
original PEG algorithm to choose the placement positions of the QC
sub-matrices in the parity-check matrix of the code in order to in-
crease the girth of the code. The proposed QC-DO-PEG algorithm
further improves performance by using the SPA decoder in code con-
struction to optimise edge placement. Essential concepts and nota-
tion in QC-LDPC codes and the PEG algorithm are outlined in the
following.

QC-LDPC parity-check matrices (PCMs) are structured as

HQC =

⎡
⎢⎢⎢⎣

A1,1 A1,2 · · · A1,t

A2,1 A2,2 · · · A2,t

...
...

. . .
...

Ac,1 Ac,2 · · · Ac,t

⎤
⎥⎥⎥⎦ , (1)

each Aa,b is a Q×Q matrix, either a circulant permutation ma-
trix or a null matrix. In [12] the position of and the first entry in
each Aa,b is determined by a modified PEG algorithm which oper-
ates on every Q-th column. The remaining entries in Aa,b are found
by cyclic shift. In the proposed algorithm the sub-matrix positions
and entry positions within the sub-matrix are determined by the PEG
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based tree expansion in combination with our proposed decoder op-
timisation.

In the PEG algorithm and its modification for constructing QC-
LDPC codes, the neighbourhood to depth l of a VN vj is the set of
all CNs in the tree expanded from VN vj with l levels and is denoted
N l

vj
. The set of all CNs which are not in the neighbourhood of vj

at depth l is then denoted N l
vj

. The QC-PEG algorithm expands the

tree from vj to depth l such that either the cardinality of N l
vj

stops

increasing or N l
vj

�= 0 but N l+1
vj = 0. In the second case a cycle

will be created, and this cycle will have the greatest length possible
under the current graph setting.

Dv is defined as the degree sequence of weights of the columns

of sub-matrices. Nmw,l
vj is the set of CNs in N l

vj
which have mini-

mum weight under the current graph setting.

3. PROPOSED QC-DO-PEG CODE DESIGN

H

Length

Rate

Dv

PEG Tree
Expansion

ccand = N
mw,l
vj (p)

Apos,j = Ishift

Hcand =

⎡
⎢⎣

· · ·

...
· · · Apos,j

· · ·

...

⎤
⎥⎦

DOPEG
comparison
of candidate
codes

Achosen,j

Fig. 1. Block Diagram of the QC-DO-PEG Construction

With high regularity the QC-PEG algorithm provides a set of

candidate check nodes Nmw,l
vj with cardinality greater than 1. In this

case a CN is chosen at random from this set of minimum weight CNs
and the rest of the edges in the sub-matrix are placed by a downward
cyclic shift of the first column defined by this choice. In the proposed
QC-DO-PEG algorithm the decoder optimisation is used to make a

choice when there is more than one CN in the set Nmw,l
vj , each cor-

responding to a distinct circulant permutation matrix in a particular
position with a particular cyclic shift in the first column. An inter-
mediate code is constructed for each candidate circulant permutation
matrix and the performance of these codes is compared by encoding
and operating the SPA decoder in the presence of AWGN for a given
number of message vectors and over a given range of signal-to-noise
ratios (SNRs). The intermediate code with best graph connectivity
will provide the best performance. The candidate sub-matrix corre-
sponding to this code is then chosen for placement and the algorithm
progresses to the next set of edges for placement. By optimising the
connectivity of the cycle created at each placement, the code which
is constructed by this method has better overall graph connectivity.

From the set Nmw,l
vj the goal is to identify the CN which pro-

vides the best performance. For each cg ∈ Nmw,l
vj , g = 1 :

Length(Nmw,l
vj ), the candidate code is described by Hcand.:

Hcand. =
[
Bcurr.,1 Bcurr.,2 · · · Bcurr.,j−1 Bcand.

]
(2)

The Q · c×Q matrices Bcurr.,b, b = 1 : j − 1 are the columns
of sub-matrices of the code under the current graph setting, exluding
the column of interest.

Bcand. =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1,j

...
Acircposg,j

...
Ac,j

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

The Aa,j , a = 1 : c / (circposg) are the sub-matrices of the
column of interest under the current graph setting. Acircposg,j is the
sub-matrix specified by cg . It has a ”1” entry in the position shiftg in
its first column, subsequent columns are downward cyclic shifts of
this column. The indices circposg and shiftg are given by:

circposg = �g/Q�, (4)

shiftg = ((g − (circposg − 1) ·Q− 1) mod Q) + 1 (5)

The performance of each candidate code is then tested by encod-
ing randomly generated message vectors and decoding in the pres-
ence of AWGN over a range of values of SNR.

3.1. Calculation of Metric of Convergence

For each candidate code, the soft-output bit log-likelihood ratios
(LLRs) of the decoder are given by

L(Ti) = L(si) +
∑
j∈Ci

L(rji), (6)

where L(si) is the channel output LLR for the coded bit si and
L(rji) is the LLR passed from CN j to VN i in a half-iteration of the
SPA algorithm. Ci is the set of CNs connected to VN i. Our goal is
to produce a convergence metric CVM for each candidate node CN

cg , g = 1,. . . , X , where X is the cardinality of the set Nmw,l
sj . We

define the Z ×X matrix:

D(h, g) =
Y∑

t=1

N∑
i=1

(w · |L(Ti)|) , (7)

w =

{
1 if sgn(L(Ti)) = si

−1 otherwise ·
(8)

where N is the length of the candidate codeword, Y is the number
of message vectors transmitted for each candidate code at each SNR
point and h indicates the SNR point, h = 1, . . . , Z and Z is the
total number of SNR points. The convergence metric CVM(g) for
candidate CN cg is then the overall average sum for each candidate
at each SNR point.

3.2. Pseudocode for the QC-DO-PEG Algorithm

In Algorithm 1 the pseudocode for the proposed code construction
algorithm is presented. The � · � operator indicates the smallest
integer greater than the value it operates on. The Length( . ) function
is the cardinality of the set it operates on.

From Algorithm 1, it can be seen that the proposed construc-
tion differs from the QC-PEG algorithm in steps 21 and 22. Step
21 will be the major contributor to the increase in complexity. This
step involves a matrix inversion to derive the candidate encoder, and
for each test message transmitted a matrix multiplication and use
of the SPA decoder. These steps are required for each candidate
at each edge placement. As a reference, for the codes presented in
Fig. 2 the MATLAB tic/toc functions returned construction times
of approximately 3 seconds and 348 seconds for the QC-PEG and
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QC-DO-PEG constructions, respectively. For this reason the con-
struction method is viable for short to medium length codes only.
While this may seem to be an excessive increase in complexity, it
should be noted that code construction is in most cases carried out
off-line and in transmission the codes cost no more in terms of com-
plexity than a QC-PEG code or any QC-LDPC code with the same
block length and sub-matrix size.

4. SIMULATION RESULTS

We consider irregular rate R = 1
2

codes with maximum VN degree
8, from the variable node degree distribution

λ1(x) = 0.2703x+ 0.2973x2 + 0.4324x7, (9)

which was derived from the DE optimal degree distribution pre-
sented in [5] Table II, subject to the constraint imposed by the QC
structure of the codes to be generated and the additional constraint
that the number of weight-2 variable nodes be less than the total
number of check nodes. This last constraint ensures that no cycles
exist which are composed entirely of weight-2 nodes, a particularly
damaging scenario in terms of performance under SPA decoding.

BPSK modulation over the AWGN channel was considered. The
log-domain SPA decoder was used in the receiver and at least 80
block errors were gathered per point in each BER plot. For compar-
ison, a random irregular QC-LDPC construction and the QC-PEG
construction of [12] were used. The random construction consists of
randomly choosing both sub-matrix position and the position of the
first entry within the sub-matrix. The code produced then had length
4 cycles removed, as is standard practice with randomly generated
codes.

In Fig. 2 the BER performance of codes of length 256, rate R =
1
2

and with sub-matrix size Q = 8 is compared. In Fig. 3 the BER
performance of codes of length 512, R = 1

2
and with sub-matrix size

Q = 16 is compared. For both Fig. 2 and Fig. 3, as expected, the
two PEG-based constructions outperform the random construction
by a considerable margin. This is due to the large number of short
cycles in the graph of the random QC code and the fact that there
is no restriction on cycles formed of only weight-2 variable nodes.
It is seen that the two PEG-based codes perform almost exactly as
well in the low SNR region. The benefits of decoder optimisation in
the QC-DO-PEG are seen in the error floor region of the plots. Since
the cycles created by the QC-PEG and QC-DO-PEG are, on average,
of equal length this gain is a result of the improved connectivity of
cycles in the graph of the QC-DO-PEG code. This is consistent with
the results presented in [6] concerning error floor performance.

For the QC-DO-PEG as for the QC-PEG code it was found that
BER performance improved as the sub-matrix size decreased, with
the limiting case of Q = 1 corresponding to the original PEG al-
gorithm. This provides a trade-off between code performance and
encoding/decoding complexity, with smaller Q allowing more free-
dom in the QC-PEG and QC-DO-PEG to produce better performing
codes and larger Q restricting the gains of the PEG tree expansion
while lowering encoding and decoding complexity.

5. CONCLUSIONS

In this paper a construction method for regular and irregular QC-
LDPC codes was presented. The codes generated by this method
outperform those of [12] which were shown to perform favourably
when compared to both randomly and algebraically constructed
LDPC codes. The QC-LDPC codes generated by this method are

Algorithm 1 QC-DO-PEG
1. for j = 1 : t do
2. for k = 1 : Dv(j) do
3. if k == 0 & j > N

2
then

4. Choose candidate cind at random from the set Nmw,l
vj .

5. for m = 0 : Q− 1 do
6. circpos = �ind/Q�
7. shift = ((ind − (circpos − 1) · Q + m − 1)

mod Q) + 1
8. Place edge in the position

(c((circpos−1)·Q)+shift, vj·Q+m)
9. end for

10. else
11. Expand the tree from the VN vj to depth l s.t. N l

vj
stops

expanding or N l
vj

�= 0 but N l
vj

= 0.
12. if j < c+ 1 then
13. Choose candidate cind at random from the set

Nmw,l
vj .

14. for m = 0 : Q− 1 do
15. circpos = �ind/Q�
16. shift = ((ind − (circpos − 1) · Q + m − 1)

mod Q) + 1
17. Place edge in the position

(c((circpos−1)·Q)+shift, vj·Q+m)
18. end for
19. else
20. for p = 1 : Length(Nmw,l

vj ) do
21. Form the PCM Hcand. as H under the cur-

rent graph setting with a circulant permutation
matrix in the position defined by its first en-

try (ccand., vj·Q+1) where ccand. = Nmw,l
vj (p).

Use Hcand. to encode, decode in the presence of
AWGN using log-domain SPA decoder with soft
output. Compute convergence metrics CVM as
described in Section 3.1.

22. Identify CN cind = arg max
g

(CVM(g)).

23. for m = 0 : Q− 1 do
24. circpos = �ind/Q�
25. shift = (1+(ind−(circpos−1) ·Q+m−1)

mod Q) + 1
26. Place edge in the position

(c((circpos−1)·Q)+shift, vj·Q+m)
27. end for
28. end for
29. end if
30. end if
31. end for
32. end for
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Fig. 2. Performance of codes of length 256, rate 1/2, Q = 8

capable of more efficient encoding than unstructured LDPC codes
while remaining more flexible in length and rate than those codes
produced by algebraic constructions. The construction method
presented is more computationally costly than that presented in
[12] but this cost is seen to provide definite improvement in BER
performance. For this improvement there is no extra cost in the
implementation of these codes over the previous QC-PEG codes.
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