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ABSTRACT

A practical approach to designing distributed transform codes

for high-dimensional correlated Gaussian vectors is pre-

sented. In this approach, source-splitting based on linear ap-

proximations is used to achieve arbitrary rate-pairs, by using

only Wyner-Ziv (WZ) quantizers. The optimal bit-allocation

among a dependent set of WZ quantizers is found by using

a tree-search algorithm. Experimental results obtained with

actual designs, which use conditional entropy constrained

trellis coded quantizers (CEC-TCQ) and Slepian-Wolf (SW)

codes, are presented.

Index Terms— Distributed transform codes, Wyner-Ziv

quantization, Karhunen-Loéve transform, bit allocation.

1. INTRODUCTION

Many new applications rely on networks of distributed wire-

less sensors to acquire information in the form of high-

dimensional vectors (e.g., multi-camera imaging systems and

microphone arrays). In such applications, an encoder in each

sensor quantizes a vector of observation variables (without

exchanging any information with other sensors) and trans-

mits its output to a central processor. A special case of this

more general distributed vector quantization (VQ) problem

is Wyner-Ziv (WZ) quantization, in which a single source is

quantized given that the decoder has access to side informa-

tion about the source, see [1] and references therein.

The design of a distributed VQ for a large number of

source variables is in general a difficult task. A practically

simpler, yet very effective approach to quantization of a large

number of correlated variables by using a bank of single vari-

able quantizers is transform coding (TC) [2]. In TC, the corre-

lation among the variables in a vector is exploited by applying

a “de-correlating” linear transform to the vector prior to quan-

tization. Recently, distributed TC (DTC) has been considered

in both WZ setting [3–5], as well as in the multi-terminal set-

ting [6]. In [6], the optimal performance theoretically attain-

able (OPTA) in the Gaussian WZ-TC problem under mini-

mum mean square error (MMSE) quantization is derived. In
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particular, it is shown that the optimal transform is the condi-

tional Karhunen-Loéve transform (CKLT). The optimal so-

lution to the more general multi-terminal WZ-TC problem

remains unsolved, even for the Gaussian case. An iterative

descent algorithm which alternately optimizes the WZ-TC of

one terminal, while keeping the other terminals fixed, is used

in [6] for obtaining a locally optimal solution to the Gaussian

multi-terminal problem. The resulting transform is refereed

to as the distributed KLT (DKLT). However, the implementa-

tion of quantizers implied by the DKLT is not tractable, since

it is not practical to actually design a set of near-optimal WZ

quantizers in each iteration of the aforementioned algorithm.

In this paper, we present a practical approach to design-

ing a DTC with arbitrary bit-rates for Gaussian two-terminal

case. The main idea is to use source-splitting based on opti-

mal linear approximations to convert the two-terminal DTC

problem into two WZ-TC problems. For each WZ-TC, the

optimal transform as well as the bit allocations can be ob-

tained in closed-form, based on which practical WZ quan-

tizers approaching the optimal performance can be designed.

However, source-splitting requires optimally allocating bits

among a dependent set of WZ quantizers. A low-complexity

tree-search algorithm is proposed for solving this problem.

We present experimental results obtained with a practical im-

plementation of the proposed source-split DKLT (SP-DKLT)

code for a 16 dimensional Gaussian source pair, which uses

SW-coded CEC-TCQ to realize block WZ quantizers. These

results demonstrate that SP-DKLT can significantly outper-

form non-distributed TCs.

2. SP-DKLT CODES AND OPTIMIZATION

A block diagram of the proposed SP-DKLT system is shown

in Fig. 1. Let the total number of bits available for encoding

two jointly Gaussian vectors X1 ∈ R
M1 and X2 ∈ R

M2 be

B bits. The terminal 1 provides decoder side-information for

WZ coding of the terminal 2 at the rate B′
1 (< B) bits/vector.

In the transform coding framework, the goal is to provide the

best (in MMSE sense) linear approximation of X1 using B′
1

bits/vector as the decoder side-information. Given the quan-

tized version Y′
1 ∈ R

N ′
1 of the transform coefficient vector

U′
1 = T

′T
1 X1 ∈ R

M1 at the decoder, where N ′
1 ≤ M1, the
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Fig. 1. The proposed source-split transform coding system for distributed quantization of correlated vectors.

terminal 2 then quantizes the best linear approximation of X2

using B2 (< B − B′
1) bits/vector. Finally, given the linear

approximations of both X1 and X2 available at the decoder,

the terminal 1 WZ quantizes the best linear approximation us-

ing B′′
1 (= B − B′

1 − B2) bits/vector. The total transmission

rate for source X1 is thus B1 = B′
1 + B′′

1 bits/vector. Let the

quantized version of the U2 = TT
2 X2 ∈ R

M2 be Y2 ∈ R
N2 ,

N2 ≤ M2 and that of U′′
1 = T

′′T
1 X1 ∈ R

M1 be Y′′
1 ∈ R

N ′′
1 ,

N ′′
1 ≤ M1. Also let V = (Y′

1,Y2)T . Given a total of B
bits for encoding both X1 and X2 , the design of this system

involves determining the optimal transforms T′
1, T′′

1 , and T′′
2 ,

and the corresponding bit allocation among the transform co-

efficients U = (U′
1,U

′′
1 ,U2)T such that the total MSE

D = E
{
‖X1 − X̂1‖2 + ‖X2 − X̂2‖2

}
(1)

is minimized, where X̂1 = E{X1|V,Y′′
1} and X̂2 =

E{X2|V}. Let U′
1 = (U ′

1,1, . . . , U
′
1,M1

)T , U′′
1 = (U ′′

1,1, . . . ,

U ′′
1,M1

)T and U2 = (U2,1, . . . , U2,M2)
T . Let the bit-

rates allocated to quantizing these transform coefficients be

r′1 = (r′1,1, . . . , r
′
1,M1

)T , r′′1 = (r′′1,1, . . . , r
′′
1,M1

)T , and r2 =
(r2,1, . . . , r2,M2)

T respectively. Define r = (r′1, r
′′
1 , r2)T .

The bit allocation problem can now be stated as follows:

given a total bit-budget of B bits, minimize D(r) subject to

2M1+M2∑
m=1

rm ≤ B,

rm ≥ 0, m = 1, . . . , 2M1 + M2, (2)

where r = (r1, . . . , r2M1+M2)
T . The explicit solution of

this problem is unfortunately intractable due to the inter-

dependence of the three transform codes involved. However,

an explicit solution can be found to a variant of this prob-

lem in which B′
1, B′′

1 , and B2 are fixed. This constraint

converts the main bit-allocation problem in (2) into three

sub-problems which only require the optimal bit allocation

among the coefficients within a transform code. We refer to

this as the constrained bit-allocation problem. In the follow-

ing, we first derive an explicit solution to this problem based

on the rate-distortion optimal WZ quantization model of [6]

for compressing the transform coefficients. Based on this

result, we present a tree-search algorithm to obtain a solution

to the main bit-allocation problem.

Theorem 1: Suppose X ∈ R
M and Y ∈ R

M2 are mean-

zero and jointly Gaussian vectors. Let the conditional co-

variance matrix of X given Y be diagonal and have diagonal

elements λ = (λ1, . . . , λM )T , where λ1 ≥ λ2 . . . ≥ λM .

Then, given a total bit budget of B bits, the optimal (in MMSE

sense) bit allocation (ρ1, . . . , ρM )T for separate R-D optimal

WZ quantization of each component of X, given the decoder

side-information Y, is given by

ρm (λ, B,N) =

⎧⎨
⎩

1
2 log2

[
λm

d∗(λ,B,N)

]
m = 1, . . . , N

0 m = N + 1, . . . , M,

where N < M is the largest integer for which λm ≥
d∗ (λ, B, N) �

(∏N
i=1 λi

) 1
N

2−
2B
N , m = 1, . . . , N . The

resulting minimum quantization MSE is

J(λ, B) = Nd∗ (λ, B, N) +
M∑

m=N+1

λm. (3)

Proof: Directly follows from [6, Theorem 3].

2.1. Solution to the constrained bit-allocation problem

First consider the non-distributed transform code for X1

based on T′
1. It is well known that the MMSE optimal T′

1

is the KLT of X1. Let the eigenvalues of the covariance

matrix of X1 be λ′
1 = (λ′

1,1, . . . , λ
′
1,M1

)T . Then, it di-

rectly follows from Theorem 1, that the optimal bit allocation

among U ′
1,1, . . . , U

′
1,M1

is given by r′1,m = ρm

(
λ′

1, B
′
1, N

′
1

)
bits/sample, m = 1, . . . , M ′

1. With RD-optimal quantization

of Gaussian variables, we can represent the quantized value

of U′
1 = K

′T
1 X1 (up to a scaling factor) by [6, (29)].

Y′
1 = K

′(N ′
1)T

1 X1 + Z′
1, (4)

where K
′(N ′

1)
1 denotes the M1 ×N ′

1 matrix consisting of first

N ′
1 columns of K′

1 and the quantization noise Z′
1 ∈ R

N ′
1
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is a mean zero iid Gaussian vector independent of X1. The

variance of Z ′
1,m, m = 1, . . . , N ′

1 is [6, (30)]

E{Z2
1,m} = λ′

1,md∗
(
λ′

1, B
′
1, N

′
1

)
/

[
λ′

1,m − d∗
(
λ′

1, B
′
1, N

′
1

)]
.

Next consider WZ transform coding of X2 given Y′
1 at

the decoder. Invoking [6, Theorem 3], we find that T2 which

minimizes E‖X2 − X̂2‖2 is the CKLT computed from the

contrivance matrix of X2 given Y′
1, ΣX2|Y ′

1
[which can be

determined from (4)]. According to Theorem 1, the bit alloca-

tion which achieves the MMSE is r2,m = ρm (λ2, M2, N2),
m = 1, . . . , M2, where λ2 is the vector of eigenvalues of

ΣX2|Y ′
1

and the resulting MSE is given by [see (3)]

E‖X2 − X̂2‖2 = N2d
∗
2 (λ2, B2, N2) +

M2∑
m=N2+1

λ2,m. (5)

As before, let the quantized value of the transform coefficients

be given by

Y2 = K(N2)T
2 X2 + Z2, (6)

where Z2 is a zero-mean iid Gaussian vector independent

of X2. Finally, T′′
1 which minimizes E‖X1 − X̂1‖2 is

the CKLT computed from the covariance matrix ΣX1|V of

X1 given V, the corresponding bit allocations is r′′1,m =
ρm

(
λ′′

1 , B′′
1 , N ′′

1

)
, m = 1, . . . , M1, where λ′′

1 is the vector of

eigenvalues of ΣX1|V , and the resulting MSE is

E‖X1−X̂1‖2 = N ′′
1 d∗

(
λ′′

1 , B′′
1 , N ′′

1

)
+

M1∑
m=N ′′

1 +1

λ′′
1,m. (7)

2.2. Solution to the main bit-allocation problem

The solution to the main bit-allocation problem defined in

(2) corresponds to the minimum MSE solution of the con-

strained problem over the set S = {(B′
1, B

′′
1 , B2) : B′

1 ∈
(0, B), B′′

1 ∈ (0, B), B2 ∈ (0, B), B′
1 + B′′

1 + B2 = B}.

One approach to locating this minimum is to search over an

appropriately discretized grid of points inside S. The pro-

posed search algorithm is a generalization of a class of bit-

allocation algorithms in which a small fraction ΔB of the to-

tal bit-budget B is allocated to the ”most deserving” quantizer

among a set of quantizers in an incremental fashion, until the

entire bit-budget is exhausted [2, Sec. 8.4]. However, this

type of greedy search cannot guarantee that the final solution

is overall optimal. In fact, locating the optimal solution (pro-

vided that it is on the grid) requires a tree-search, where each

candidate solution corresponds to a path in the tree. Even

though a full tree-search is intractable, a simple algorithm ex-

ists for detecting the minimum cost path in a tree with a high

probability.

Let 0 < ΔB << B. If we are to assign ΔB bits to only

one of the three transform codes T′
1, T′′

1 , or T2, then there are

three possible choices for the rate-tuple (B′
1, B

′′
1 , B2), namely

(ΔB, 0, 0), (0, ΔB, 0), and (0, 0, ΔB). For each of these

choices, we can explicitly solve the constrained bit alloca-

tion problem and find the MMSE solution as described in Sec.

2.1. Each of these solutions corresponds to a node in the first

level of nodes in the tree. Each node in this level corresponds

to DTC of rate ΔB bits per source pair (X1,X2), where the

root node of the tree corresponds to a DTC of rate 0 bits. Now

if we are to allocate ΔB more bits to any one of the DTCs in

the first level of nodes, we end up with 32 possible bit allo-

cation solutions, which constitute the second-level of nodes

in the tree. Each node at this level corresponds to a DTC of

2ΔB bits per source-pair. We can repeat this procedure, al-

locating ΔB bits to each of the nodes, to grow the tree to a

depth of L = B/ΔB levels. This tree would have 3L terminal

nodes each of which corresponds to a DTC of rate B bits. The

MMSE terminal node of this tree is the optimal bit-allocation

solution to the main bit allocation problem, provided that the

latter solution is on the grid. If ΔB is chosen small enough,

then we can ensure that the optimal solution is nearly on the

grid. In theory, the optimal solution can be found by search-

ing the tree using quantization MSE of each node as the path-

cost. In order to practically implement the tree-search, we use

the (M, L)-algorithm [7, pp. 216], in which the parameter M
can be chosen to reduce the complexity at the expense of de-

creased accuracy (i.e., the probability of detecting the lowest

cost path in the tree). In our experiments, we used ΔB = 0.2
and M = 27 (M = 81 yielded nearly the same result).

3. EXPERIMENTAL RESULTS AND DISCUSSION

For the purpose of testing SP-DKLT codes, we define the ran-

dom vectors X1 and X2 to be observations picked-up by a

pair of sensor arrays placed in a spatial Gaussian random field

in which the correlation function decays with distance d ac-

cording to the squared exponential model [8]. In this case,

the elements of the auto-covariance matrix ΣX1 of X1 are

given by [ΣX1 ]ij = exp
{
− (αdij)2

}
, where α > 0 is a con-

stant and dij is the distance between the i-th and j-th com-

ponents. The auto-covariance matrix ΣX2 of X2 also has a

similar form. For simplicity, assume that the sensors in each

array are placed on a square grid of unit spacing, and that

the two arrays are on parallel planes separated by a distance

r. With this setup, the elements of the cross-covariance ma-

trix ΣX1X2 is given by [ΣX1X2 ]ij = θ exp
{
− (αdij)2

}
,

where θ = exp
{
− (αr)2

}
. This sensor structure ensures

that ΣX1X2 can be chosen independently (by choosing array

separation r) of ΣX1 and ΣX2 .

Rate-distortion performance- We can compute the rate-

pairs (R1, R2) achievable with SP-DKLT, where R1 =
B1/M1 bits/sample and R2 = B2/M2 bits/sample, for a

given a total MSE D, by fixing R1 (or R2) and then searching

for minimum R2 (or R1) required to achieve the MSE D,

by using the the tree-search algorithm presented in Sec. 2.2.

The rate pairs achievable with SP-DKLT for D = 0.005 is

compared with the OPTA bound predicted by the DKLT [6]
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Table 1. SNR (in dB) of transform code designs for sensor arrays in a Gaussian random field (M1 = M2 = 16, R1 = R2 = R).

R=0.5 bit/sample R=1 bit/sample R=1.5 bits/sample R=2 bits/sample

Analytic. Design Analytic. Design Analytic. Design Analytic. Design

IKLT 11.7 11.0 18.0 17.3 23.0 22.5 27.1 26.6

SP-DKLT 14.0 12.7 20.6 19.6 25.6 24.4 29.8 28.6

and the independent (non-distributed) KLT (IKLT) for source

parameters α = 0.32 (for which the highest value of the auto-

correlation coefficient between two components in either X1

or X2 is 0.9) and several values of θ (which is the high-

est value of the cross-correlation coefficient between any two

components of X1 and X2). Since α is fixed, auto-covariance

matrices are the same in all cases. However, higher θ implies

stronger inter-vector correlation and hence improved per-

formance with distributed coding compared to independent

coding. As one would expect, SP-DKLT performance coin-

cides with OPTA (DKLT) lower bound when either R1 or

R2 is high. The rate-distortion performance seen in Figs. 2

indicates that SP-DKLT codes can significantly outperform

independent KLT codes at all rates when there is sufficient

correlation between two distributed source. The gap between

SP-DKLT performance and OPTA (DKLT) lower bound seen

in Fig.2 is due to source splitting in terms of linear approxi-

mations, rather than in terms of optimal VQs.

Design Examples- Since our solution for optimal trans-

forms and bit-allocations assume R-D optimal quantization,

we have to use block WZ quantization in practice to approach

the predicted performance. To this end, we employ TCQ

followed SW coding [1] to design WZ quantizers. We first

design a CEC-TCQ for each transform coefficient such that

the output conditional entropy of the TCQ, given the decoder

side-information is equal to the rate given by the optimal-bit

Fig. 2. Comparison of rate-regions achievable with transform

coding of sensor arrays in a Gaussian random field.

allocation solution. In order to do this, we use the conditional

expectation of each transform coefficient, given the decoder

side-information vector as the scalar side-information to de-

sign the TCQ (it can be shown that this is a sufficient statistic

under RD optimal WZ quantization of jointly Gaussian vec-

tors). To design CEC-TCQs, we have used a modified version

of the algorithm in [9] (we used a 8-state TCQ with a coding

block length of 256). We have assumed ideal SW coding. In

Table 1, the overall quantization SNR of practical SP-DKLT

designs for 16-dimensional vectors is compared with that of

IKLT designs (which use entropy-coded TCQ [9] based on

bit allocations for independent coding). While the perfor-

mance gain relative to IKLT depends on the source correla-

tion model, these results demonstrate that SP-DKLT coding

is a relatively simple approach to the practical design of high-

dimensional VQ, which only involves the design of a set of

WZ quantizers and SW codes. It would however be inter-

esting to seek practical designs which are capable of more

closely approaching the performance predicted by the DKLT

(see Fig. 2).
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