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ABSTRACT

Oversampled filter banks perform a subband decomposition with re-
dundancy representation. This redundancy has been shown to be
useful to combat channel impairments, when the subbands are trans-
mitted over a wireless channel, as well as quantization noise. This
paper describes an implementation of the maximum a posteriori and
the minimum mean-square error (MMSE) estimators of the input
signal from the noisy quantized subbands obtained at the output of
some transmission channel. The relations between the input samples
and the noisy subband samples are described using a factor graph.
Belief propagation is then applied to get the posterior marginals of
the input samples. The experimental results show that when the
channel is clear, a linear MMSE estimate performs quite well but the
proposed approaches perform significantly better than a reconstruc-
tion using the linear MMSE estimator when the channel is noisy: a
gain in terms of channel SNR of more than 2 dB is observed.

1. INTRODUCTION

Recently a growing interest has been dedicated to communication
systems performing jointly source and channel coding [1]. Such
schemes cope better with unknown and changing channel charac-
teristics than the classical tandem schemes. In this context, multi-
rate systems and more particularly Oversampled Filter Banks (OFB)
[2,3] are attractive solutions since they provide an overcomplete rep-
resentation of the input signal by introducing some structured redun-
dancy among the output subbands. OFB may then be seen as error-
correcting codes in the real field as evidenced in [4–6]. OFB may
correct transmission errors left by channel decoders and mitigate a
part of the quantization noise [7]. Specific decoding techniques have
been developed for OFB. Hypotheses testing and maximum likeli-
hood estimation are considered in [4]. Kalman filtering is consid-
ered in [6]. A consistent reconstruction technique accounting for the
bounded nature of the quantization noise is introduced in [8].

This work considers the maximum a posteriori (MAP) and
MMSE estimation of the input of an OFB, when its output subbands
are quantized and transmitted over a noisy channel. The compu-
tation of the exact MAP estimator is intractable in general, even
for moderate-size input signals. When the OFB consists of finite
impulse response filters, a factor graph may describe the relations
between the input samples and the noisy subband samples. Belief
propagation (BP) may then be used to compute the posterior prob-
ability distribution (PPD) of each entry of the input vector knowing
the noisy subbands. This approach is inspired from [9, 10] where
the problem of estimating some input vector x ∈ R

n from noisy
observations y ∈ R

m of linear measurements z = Φx of x has been

addressed with BP. This problem is known as a linear mixing esti-
mation problem. Via BP, the linear relations between the variables
are exploited to update their PPD. This is done by passing messages
on the variable states along a graph [11–13]. This message passing
algorithm (MPA) operating in real field is similar to MPA for LDPC
codes which work in finite fields [14]. The exact implementation of
BP for dense mixing matrices is computationally very complex as
it involves high-dimensional integrations for the PPD calculation.
Implementations of BP based on Gaussian approximations have
proven to be efficient and accurate as for example the Generalized
Approximate Message Passing (GAMP) algorithm [10].

When the length of the impulse response of the filters involved in
the OFB is not too large, the Φ matrix associated to the OFB may be
quite sparse. Approximate implementation of the BP algorithm us-
ing discretized probability density functions becomes then tractable
and has been considered here.

The rest of the paper is organized as follows. The considered
communication scheme is presented in Section 2. The link between
the input estimation of OFBs from noisy subbands and the linear
mixing estimation problems is detailed in Section 3. The MAP and
MMSE estimations using BP are then described in Section 4. Fi-
nally, experimental results are presented in Section 5 before drawing
some conclusions in Section 6.

2. TRANSMISSION SCHEME

The communication scheme considered here is depicted in Figure 1.
The random input vector x ∈ R

n has i.i.d. components with prior

MAP

estimator

quantization

function
modulation noisy channel

channel

Fig. 1. Transmission scheme based on an OFB

probability density function (pdf) pX(xj), j ∈ {0, . . . , n−1}. This
vector passes first through an OFB introducing a redundancy ρ =
m/n. The resulting vector z ∈ R

m is then quantized to get a vec-
tor of quantization indexes s. The quantization function is denoted
by Q(z) and the modulation function by M(s). The modulated se-
quence corresponding to s and denoted by b is transmitted over a
memoryless channel. Finally the observation y of real (or complex)
values is obtained at the output of this channel.
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In the particular case of a scalar quantization with the same rate
R for each subband sample and a BPSK modulation, each quantized
index si, i ∈ {0, . . . ,m − 1} of s is represented by a binary se-
quence bi of R elements and the observation y ∈ R

m×R is formed
by m vectors yi ∈ R

R representing the components zi of z. The
considered problems consist in the evaluation of the MAP estimate
of x:

x̂MAP = arg max
x∈Rn

p(x|y) (1)

and of its MMSE estimate:

x̂MMSE =

∫
x∈Rn

xp(x|y)dx (2)

The evaluation of x̂MAP and x̂MMSE is intractable in practice when
considering high-dimensional input vectors. We show in the next
section that these problems may be addressed in the framework of
linear mixing problems for which a suboptimal solution can be eval-
uated using the BP algorithm. More precisely, one is able to estimate
marginal PPDs for each entry of x.

3. LINEAR MIXING PROBLEM

3.1. General Scheme

A general linear mixing problem, see, e.g., [9, 10], is presented in
Figure 2. The vector x goes through an m× n matrix Φ:

z = Φx (3)

The output vector z is then transmitted over a separable measure-
ment channel characterized by its conditional probability pY|Z(yi|zi)
and delivering the measurements y. Here, the quantization and mod-
ulation operations, assumed to be separable are incorporated into the
measurement channel, see Figure 2. The difficulty in the estimation

Fig. 2. General linear mixing estimation problem

of x knowing y is that Φ mixes x to get z. Getting the PPD of each
element xj , j ∈ {0, . . . , n− 1} or zi, i ∈ {0, . . . ,m− 1} involves
a high-dimensional integral which is difficult to evaluate. Such an
estimation problem may be solved using BP, provided that a graph
representing the dependencies between the variables is available.
BP updates then the PPDs of these variables via a message passing
procedure along the edges of this graph [11, 14].

3.2. Linear mixing performed by OFBs

An OFB is a filter bank whose number of output subbands is larger
than the downsampling factor. These subbands form then a redun-
dant representation of the input signal. A typical M−band OFB
with a downsampling factor of N � M such that ρ = M/N , is
presented in Figure 3. This OFB is formed by M FIR analysis fil-
ters {hm}M−1

m=0 with maximal length N × (L + 1). The polyphase
representation of this OFB is the matrix:

E(z) =

L∑
�=0

E�z
−�

N

N

N

x

z−1

z−1

z−1

xNk

xNk+1

xNk+N−1

zMk

zMk+1

zMk+M−1

E(z)

Fig. 3. Oversampled filter bank

where E�, � = 0, . . . , L is a sequence of M × N matrices which
can be constructed from {hm}M−1

m=0 [15]. The following polyphase
notations are used for the vectors x and z:

x = {x0, . . . , xN−1, . . . , xNk, . . . , xNk+N−1, . . . , xn−1}
z = {z0, . . . , zM−1, . . . , xMk, . . . , xMk+M−1, . . . , zm−1}

where k refers to the current instant. At each instant k the input of
the OFB is the vector xk = (xNk, . . . , xNk+N−1)

T and its output
is the vector zk = (zMk, . . . , zMk+M−1)

T obtained as follows:

z
k =

L∑
�=0

E�x
k−� = EL:0x

k−L:k, (4)

where xk−L:k =
((

xk−L
)T

, . . . ,
(
xk

)T)T

contains all the input

samples on which the OFB output at time k depends and EL:0 =
(EL, . . . ,E0) is an M × (L+ 1)N matrix. One can then write the
whole OFB operations as a linear mixing as presented in (3), where

Φ =

⎡
⎢⎢⎢⎢⎣

EL · · · E1 E0 0 · · · 0

0 EL · · · E1 E0

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 EL · · · E1 E0

⎤
⎥⎥⎥⎥⎦

The MAP and MMSE estimation problems formulated in (1) and
(2) can then be solved in an approximate way by using the marginal
PPDs of x evaluated with the BP algorithm.

4. MAXIMUM A POSTERIORI ESTIMATION WITH
BELIEF PROPAGATION

Belief propagation is an iterative message passing algorithm [14]
that associates to a transform matrix Φ a factor or Tanner graph GΦ.
An example of such a graph is presented in Figure 4. The graph
GΦ is a bipartite graph formed by two kinds of nodes: the variable
nodes j = 0, . . . , n − 1 corresponding to the input variables xj

and the factor nodes i = 0, . . . ,m − 1 corresponding to the output
measurements yi of zi. An edge between the node j and the node
i means that the entry Φij is non-zero and thus the variables xj and
zi are linearly dependent. The set of variable nodes connected to the
factor node i is denoted by Nout(i). Similarly the set of factor nodes
connected to the variable node j is denoted by Nin(j). The different
nodes talk to each other by sending messages (beliefs) on the states
of each input variable xj and the corresponding probabilities.

The steps of the BP algorithm in the real field are inspired by the
ones presented by Rangan in [9]. They are summarized as follows:

1. Initialization:
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pi→j(zi→j)

pi←j(xj)

Fig. 4. Factor graph for the linear mixing estimation problem

(a) Set the current iteration k = 1.

(b) For each variable node j and factor node i forming an
edge of GΦ set the messages to the initial distribution
of the random variable Xj :

pxi←j(k, xj) = pxj (k, xj) = pXj
(xj) (5)

2. Linear Mixing:

(a) Assume that the random variables Xj are independent
and that Xj ∼ pxi←j(k, xj)

(b) Compute the distributions pzi→j(k, zi→j) of the ran-
dom variables:

Zi→j =
∑

r∈Nout(i)\j

ΦirXr. (6)

3. Output update:
For each variable node j and factor node i forming an edge
of GΦ compute the likelihood function

pui→j(k, ui) =

∫
pY|Z(yi|ui + zi→j)

pzi→j(k, zi→j)dzi→j . (7)

4. Input update:

(a) For each variable node j and factor node i forming an
edge of GΦ update the message sent by j to i

pxi←j(k+1, xj) = αpXj
(xj)

∏
�∈Nin(j)\i

pu�→j(k,Φ�jxj)

(8)
where α is a normalization constant obtained by impos-
ing that pxi←j(k + 1, xj) sum up to 1.

(b) For each variable node j update the distribution

pxj (k + 1, xj) = β pXj
(xj)

∏
�∈Nin(j)

pu�→j(k,Φ�jxj)

(9)
where β is a normalization constant obtained by impos-
ing that pxj (k + 1, xj) sum up to 1.

5. Incrementation:

(a) k = k + 1

(b) Return to Step 2 until a sufficient number of iterations
is performed.

The message pi←j(xj) sent by j to i expresses the beliefs of the
variable node j about the states in which Xj could be and their cor-
responding probabilities. The message pi→j(zi→j) is sent by the
factor node i to the variable node j. It allows to compute the likeli-
hood function pui→j(ui) that evaluates how likely the measurement
yi is obtained at node i when Xj = xj .

When GΦ does not contain any cycle and after enough iterations,
this series of message-passing is likely to converge to a consensus
that determines the true marginal p(xj |y).

In order to estimate the input signal x of an OFB from its noisy
received subbands y, the direct implementation of this BP algorithm
to perform the evaluation of the marginal PPD of each component of
x is possible as the correspondant matrix Φ is relatively sparse.

5. EXPERIMENTAL RESULTS

In this section we present the results obtained with the MAP and
MMSE estimators using the marginal PPDs of x provided by the BP
algorithm of Section 4.

We have considered an input vector x ∈ R
8. The components

of x are i.i.d. zero-mean Gaussian with variance σ2
x = 1. The OFB

used is based on the Haar filters with M = 6, N = 4, and L = 1.
The corresponding transform matrix Φ is

Φ =

[
E1 E0 06×4

06×4 E1 E0

]

where

E1 =
1√
2

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 1
0 1 1 0
0 −1 1 0

⎤
⎥⎥⎥⎥⎥⎦ and E0 =

1√
2

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 0 0
−1 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

The vector z ∈ R
12 obtained at the OFB output is quantized using

a scalar quantization function Q(z) with a rate R = 4 bits with a
quantization step

Δ = 2σx/(2
R − 1).

Quantized samples are then BPSK modulated and transmitted over
an AWGN channel with an SNR between 0 dB and 13 dB. For each
value of the SNR, the number of noise realizations has been set to
3000.

The MAP and MMSE estimators for x are compared to a scheme
using a linear MMSE (LMMSE) estimator described in Figure 5. A

y b̂ ŝ ẑ x̂
D(y) M−1(b) Q−1(s) LMMSE

Fig. 5. OFB input estimator based on a LMMSE estimator

classical decoder D(.) takes hard decisions on the received mea-
surements y. After demodulation and inverse quantization, the re-
ceived vector ẑ is obtained. The combined effect of the quantization
noise and of the errors due to the channel, after inverse quantization,
has been shown in [16] to be efficiently represented by a zero-mean
Gaussian-Bernoulli-Gaussian noise nqc, uncorrelated with x. The
covariance matrix of nqc is Γqc = σ2

qcIm×m. One has σ2
qc = σ2

q +σ2
c ,
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where σ2
q = Δ2/12 accounts for the quantization noise and σ2

c de-
pends on the quantization and modulation schemes, as well as of the
channel noise, see [16] for more details. The LMMSE estimate of x
is then:

x̂LMMSE = ΦT
(
(ΦΦT + σ2

qc/σ
2
xIm×m)−1

)T

ẑ. (10)

5.1. Performances of the proposed estimators

The BP algorithm described in Section 4 is implemented by consid-
ering probability mass functions approximating the continuous dis-
tributions. The range that has been considered for the input variables
xj is from−10 to 10. The number of points on which the probability
distribution functions are evaluated has been set to 1024. The con-
sidered resolution is then of 20/1024. The total number of iterations
of the BP algorithm is equal to 20. At each iteration, the messages
pxi←j(k, xj) and pui→j(k, ui) are vectors of 1024 entries where the
probability distribution is evaluated.

The experimental results that have been obtained are presented
in Figure 6. One can see that the gain brought by the MAP and

Fig. 6. The reconstruction SNR as a function of the channel SNR.

MMSE estimators using BP reaches more than 5 dB in terms of the
reconstruction SNR for a channel SNR equal to 6 dB. For a channel
SNR greater than 11 dB the LMMSE estimator performs better, its
gain is about 1.5 dB in reconstruction SNR compared to the MMSE
estimator and 2 dB compared to the MAP estimator. This is due
to the fact that the proposed estimators involve marginal PPDs in-
stead of the joint PPD of x. Moreover, the BP may not converge to
the exact marginal PPDs due to the presence of cycles in the graph
representing the relation between the components of the OFB input
signal and the noisy measurements of its subbands. Both effects do
not appear when the impact of the noise due to the channel is signif-
icant.

6. CONCLUSION

In this work we have presented approximate implementations of a
MAP estimator and a MMSE estimator involving marginal PPDs
evaluated using a BP to recover the input signal of an OFB from
noisy subbands. The experimental results show that when the chan-
nel is noisy, this approach performs better in terms of reconstruction
SNR than classical reconstruction provided by a LMMSE estimator.
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