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ABSTRACT

Beamforming for multi-input multi-output (MIMO) cognitive net-
works is considered in the presence of channel uncertainty induced
by errors in estimating cognitive-to-primary channels. A robust
beamforming problem is formulated to optimize an appropriate
cognitive radio network-wide performance metric, while enforcing
protection of the primary system. In spite of the non-convexity of the
resultant optimization problem, a block coordinate ascent algorithm
is developed with provable convergence to a stationary point. En-
ticingly, the novel scheme also lends itself naturally to a distributed
implementation. Numerical results are reported to corroborate the
analytical findings.

Index Terms— MIMO cognitive networks, beamforming, chan-
nel uncertainty, robust optimization, distributed computation.

1. INTRODUCTION

The key enabler for seamless frequency re-use is the ability of cog-
nitive radios (CRs) to judiciously control the interference inflicted to
the incumbent primary user (PU) system [1]. However, as full co-
operation between PU and CR nodes is generally infeasible in the
advocated hierarchical access model, CR-to-PU channels are diffi-
cult to acquire in practice. Consequently, interference is challenging
to control. It is thus of paramount importance to take into account
the inherent randomness of the CR-to-PU channels, and enforce PU
protection throughout the CR network operation [2, 3, 4].

Recently, MIMO CR networks have attracted considerable at-
tention thanks to their ability to mitigate self- and PU-inflicted in-
terference via beamforming, while leveraging spatial multiplexing
and diversity to markedly increase transmission rates and reliabil-
ity. On the other hand, wireless transceiver optimization has been
extensively studied in recent years when either perfect or imper-
fect channel state information (CSI) is available [5, 6]. In the CR
context, network utility maximization was investigated under per-
fect CSI knowledge in e.g., [7, 8] and references therein. CR-to-
PU channel uncertainties were considered with single-antenna PUs,
identical channel estimation errors for different CR-to-PU links, and
only for centralized operation [3, 4, 9].

The present paper considers a MIMO ad-hoc CR network de-
ployed to share the spectrum bands licensed to PUs, who are also
equipped with multiple antennas. The inherently stochastic nature
of the propagation environment, and the inevitable inaccuracies of
the CR-to-PU channel estimates are captured by a Frobenius norm-
bounded uncertainty model [10, Ch. 4], which leads to a robust inter-
ference constraint ensuring PU protection [2, 4]. Upon recasting the
robust constraint in a convenient form, a resource allocation prob-
lem is formulated to obtain CR transmit- and receive-beamforming
matrices minimizing the overall data symbol estimation error, while
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ensuring protection of the PU system. To cope with the inherent
non-convexity of the novel optimization problem, a block coordinate
ascent approach is developed along with a local linear approxima-
tion technique to derive an iterative algorithm with provable conver-
gence to a stationary point of the original non-convex problem. The
resulting scheme is suitable for distributed operation, where each
CR locally solves a convex sub-problem provided that relevant op-
timization parameters are obtained by measuring the interfering sig-
nals [8, 11].

Notation: Boldface lower (upper) case letters represent vectors (ma-
trices). Hn×n,Cn×n and R stand for spaces of n×n Hermitian, n×
n complex matrices, and real numbers, respectively, whereas Tr{·}
denotes the trace operator; (·)H conjugate transpose, and vec(A)
the vector obtained by stacking the columns of a matrix A; IN is the
N×N identity matrix. Finally, E{·} denotes the expectation opera-
tor.

2. PROBLEM FORMULATION

Consider a wireless MIMO CR network comprising K transmitter-
receiver pairs {U t

k, U
r
k}, sharing spectrum resources with an in-

cumbent PU system in an underlay setting [1]. Let Mk and Nk,
k ∈ K := {1, 2, . . . ,K}, denote the number of antennas of the
k-th transmitter and receiver, respectively; and sk the Mk × 1
information-bearing symbol vector transmitted by U t

k per time
slot with covariance matrix E{sksHk } = IMk . In order to alle-
viate CR mutual interference, U t

k pre-multiplies sk by a transmit-
beamforming matrix Fk ∈ C

Mk×Mk ; that is, U t
k actually transmits

the Mk × 1 symbol vector xk := Fksk.

With Hk,j ∈ C
Nk×Mj denoting the channel of CR link U t

j →
Ur

k , the Nk × 1 symbol vector received at Ur
k is

yk = Hk,kxk +
∑

j∈K\{k}
Hk,jxj + nk (1)

where nk ∈ C
Nk denotes the zero-mean complex Gaussian noise,

independent of sk, with covariance matrix E{nkn
H
k } = σ2

kINk .

Low-complexity receiver processing motivates the use of a
computationally-affordable linear filter Wk ∈ C

Mk×Nk at Ur
k to

recover sk as ŝk := Wkyk. Using Wk at Ur
k , the mean-square

error (MSE) matrix Ek := E{(ŝk − sk) (ŝk − sk)
H}, which quan-

tifies the reconstruction error, is given by [cf. (1)]

Ek = WkAkW
H
k −WkHk,kFk − FH

k HH
k,kW

H
k + IMk (2)

where Ak :=
∑K

j=1 Hk,jFjF
H
j HH

k,j + σ2
kINk . Entry (i, i) of

Ek represents the MSE of the i-th data stream from U t
k to Ur

k , and
Tr{Ek} corresponds to the MSE of ŝk. Among candidate network
performance metrics, the adopted one in this paper is the sum of
MSEs from different data streams. This metric relates to system per-
formance in terms of bit error rate (BER) as explained in [6], and
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facilitates derivation of the optimal filters. To account for different
quality-of-service demands, its weighted counterpart can be adopted
as in [12].

To complete the formulation, let Gk ∈ C
L×Mk denote the chan-

nel between CR U t
k and a PU receiver, possibly equipped with mul-

tiple (L) antennas.1 Then, the transmit- and receive-beamforming
matrices minimizing the overall MSE can be obtained as

(P1) min
{Fk,Wk}K

k=1

K∑
k=1

Tr{Ek} (3a)

s.t. Tr{FkF
H
k } ≤ pmax

k , k ∈ K (3b)

Tr{GkFkF
H
k GH

k } ≤ ιmax
k , k ∈ K (3c)

where pmax
k is the maximum transmit-power of U t

k, and ιmax
k the

maximum interference CR U t
k can afford to inflict to the PU.

As in e.g., [1, 11], partitioning of the interference budget ιmax :=∑
k ι

max
k in per-CR transmitter portions {ιmax

k } is assumed carried
out beforehand, possibly according to quality-of-service guidelines.

However, due to lack of explicit cooperation between PU and
CR nodes, CR-to-PU channels {Gk} are in general difficult to es-
timate accurately. As PU protection must be enforced strictly, it is
important to take into account the inherent channel uncertainty in
the CR-to-PU links and guarantee that the interference power expe-
rienced by the PU receiver stays below a prescribed level for any
possible (random) channel realization [2, 4]. Before developing a
resource allocation approach robust to inaccuracies in channel esti-
mates, problem (P1) is conveniently re-formulated first in order to
reduce the number of variables involved.

2.1. Equivalent Optimization Problem

For the sum-MSE cost in (3a), it will turn out that Wk can be ob-
tained in closed form. To see this, note first that for fixed {Fk},
(P1) is convex in Wk, and the optimum {Wk}s can be obtained
from the first-order optimality conditions. Express the Lagrangian
function associated with (P1) as

L (P,D) =
K∑

k=1

Tr{Ek}+
K∑

k=1

λk

(
Tr{FkF

H
k } − pmax

k

)

+

K∑
k=1

νk
(

Tr{GkFkF
H
k GH

k } − ιmax
k

)
(4)

where P := {{Fk}, {Wk}} and D := {{λk}, {νk}} collects the
primal and dual variables, respectively. Then, by setting the complex
gradient ∂L/∂W∗

k equal to zero, Wopt
k is found as

Wopt
k = FH

k HH
k,kA

−1
k , k ∈ K. (5)

Substituting {Wopt
k } back into (3a), and neglecting irrelevant terms,

it follows that (P1) can be equivalently re-written as

(P2) max
{Fk}

K∑
k=1

Tr
{
Hk,kFkF

H
k HH

k,kA
−1
k

}
(6)

s.t. (3b), (3c).

1A single PU receiver is considered throughout the paper. However, ex-
tension to multiple receiving PU devices is straightforward.

Using the covariance of transmitted symbols Qk := E{xkx
H
k } =

FkF
H
k as optimization variable, (P2) can be expressed as

(P3) max
{Qk�0}

K∑
k=1

uk ({Qk}) (7a)

s.t. Tr{Qk} ≤ pmax
k , k ∈ K (7b)

Tr{GkQkG
H
k } ≤ ιmax

k , k ∈ K (7c)

where the per-CR link utility uk ({Qk}) is given by

uk ({Qk}) := Tr

{
Hk,kQkH

H
k,k

(
Hk,kQkH

H
k,k +Rk,k

)−1
}

(8)

with Rk,k :=
∑

i�=k Hk,iQiH
H
k,i + σ2

kINk .

Channels {Gk} must be perfectly known in order to solve (P3).
A robust version of (P3), which accounts for imperfect channel
knowledge, is dealt with in the next section.

3. ROBUST CR BEAMFORMERS

In typical CR scenarios, CR and PU nodes do not generally cooper-
ate. Thus, CR-to-PU channels are challenging to estimate accurately.
To capture estimation inaccuracies, consider expressing Gk as

Gk = Ĝk +ΔGk, k ∈ K (9)

where Ĝk is the estimated channel available to U t
k, and {ΔGk} the

uncertainty error taking values from the bounded set

Gk :=
{
ΔGk|Tr{ΔGkΔGH

k } ≤ ε2k

}
, k ∈ K (10)

where εk > 0 controls the degree of uncertainty associated with
Gk. For example, (9) properly models the case where a time divi-
sion duplex (TDD) strategy is adopted by the PU system, and CRs
have prior knowledge of the PUs’ pilot symbols [3]. In lieu of pilot

symbols, {Ĝk} can be formed using the path loss coefficients, and
εk can be deduced from the fading statistics.

Based on (10), a robust interference constraint can be written as

Tr{(Ĝk +ΔGk)Qk(Ĝk +ΔGk)
H} ≤ ιmax

k ,

∀ ΔGk ∈ Gk, k ∈ K (11)

and thus, a robust counterpart of (P3) is

(P4) max
{Qk�0}

K∑
k=1

uk ({Qk}) (12)

s.t. (7b), (11).

Clearly, once {Qopt
k } solving (P4) is found, {Wopt

k } can be readily
computed via (5).

However,
∑

k uk ({Qk}) is non-convex in {Qk}, and hence
(P4) is hard to solve in general. Additionally, constraints (11) are
not in a tractable optimization form, and thus further elaboration is
needed. These issues are addressed in the next section.
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3.1. Distributed algorithm via local approximation

To cope with the non-convexity of the utility function in (P4), a
block-coordinate ascent approach is adopted. Define first the sum
of all but the k-th utility as fk(Qk,Q−k) :=

∑
j �=k uj , which is

convex in Qk [cf. Lemma 2]. By keeping only the linear term of
the Taylor’s expansion of fk(·) around a feasible point {Q̄k}, the
objective function in (12) can be approximated as (see also [8])

K∑
k=1

uk ({Qk}) = uk ({Qk}) + fk(Qk,Q−k)

≈ uk ({Qk}) + fk(Q̄k,Q−k) + Tr
{
DH

k (Qk − Q̄k)
}

(13)

where Dk := ∇Qkfk(Q̄k,Q−k) :=
∂fk
∂Q∗

k

∣∣∣
Qk=Q̄k

. Matrix Qk can

be obtained by solving the following sub-problem

(P5) max
Qk�0

uk (Qk,Q−k) + Tr
{
DH

k Qk

}
(14a)

s.t. Tr{Qk} ≤ pmax
k (14b)

Tr{GkQkG
H
k } ≤ ιmax

k , ∀ ΔGk ∈ Gk (14c)

where

Dk := −
∑
j �=k

HH
j,kB

−1
j VjB

−1
j Hj,k

∣∣∣∣∣∣
Qk=Q̄k

(15)

Bj :=

K∑
i=1

Hj,iQiH
H
j,i + σ2

j INj , and Vj := Hj,jQjH
H
j,j . (16)

Problem (P4) can clearly be solved centrally at a CR fusion
center, but the coordinate ascent approach suggests also a distributed
optimization procedure; in fact, each CR U t

k can update locally Qk

based on: i) its covariance matrix Q̄k obtained at the previous iter-
ation of the algorithm, that is to be used in (13); ii) a measurement
of the interference perceived Rk,k (see also [8]); and iii) matrices
{Bj}, {Vj}, and {Hj,k} obtained from the neighboring CR links
via local message passing.

3.2. Equivalent robust interference constraint

Constraint (14c) renders (P5) a semi-infinite program. An equiva-
lent constraint in linear matrix inequality (LMI) form will be derived
in this section. This will turn (P5) into an equivalent semidefinite
program (SDP), which can be efficiently solved in polynomial time
by standard interior point methods [10]. To this end, the following
lemma is useful.

Lemma 1 (S-Procedure [10, p. 655]) Let A,D ∈ H
n×n,b ∈ C

n,
and c, e ∈ R, and assume that there exists an x̄ satisfying x̄HDx̄ <
e. Then, the inequality

xHAx+ 2�(bHx) + c ≥ 0, ∀ xHDx ≤ e (17)

holds if and only if there exists a scalar s ≥ 0 such that[
sD+A b

bH c− es

]

 0 . (18)

Using Lemma 1, (14c) can be equivalently reformulated as follows.2

2Proofs can be found in [13].

Algorithm 1 Distributed robust sum-MSE minimization

1: Initialize Qk = 0, ∀ k ∈ K.
2: repeat
3: for k = 1, 2, . . . ,K do
4: Measure Rk,k.
5: Exchange {Bj ,Vj ,Hj,k} with interfering CR links.
6: Update Qk by solving (P6).
7: end for
8: until convergence
9: Update Wk via (5).

Proposition 1 There exists sk ≥ 0 for which (14c) is equivalent to[
skIL×Mk − (IL ⊗Qk) −vec(QH

k ĜH
k )

−vec(QH
k ĜH

k )H ιmax
k − Tr{ĜkQkĜ

H
k } − ε2ksk

]

 0 .

(19)

Using Schur complement, (P5) can be equivalently reformu-
lated as

(P6) min
Qk�0
T,sk≥0

Tr {T} − Tr
{
DH

k Qk

}
(20a)

s.t. Tr{Qk} ≤ pmax
k (20b)[

Hk,kQkH
H
k,k +Rk,k R

1/2
k,k

R
1/2
k,k T

]

 0 (20c)

[
skIL×Mk − (IL ⊗Qk) −vec(QH

k ĜH
k )

−vec(QH
k ĜH

k )H ιmax
k − Tr{ĜkQkĜ

H
k } − ε2ksk

]

 0 .

(20d)

The overall distributed scheme implemented via nonlinear
Gauss-Seidel iterations is tabulated as Algorithm 1. Notice that co-
variances can be alternatively updated using the Jacobi iteration [14,
Ch. 2].

4. CONVERGENCE

Since the original optimization problem (P4) is non-convex, conver-
gence of the coordinate ascent solver has to be established. To this
end, recall that (P5) and (P6) are equivalent; thus, convergence
can be asserted by supposing that (P5) is solved per Gauss-Seidel
iteration instead of (P6). The following lemma is first needed.

Lemma 2 For each k ∈ K, the feasible set of problem (P5),
namely Qk := {Qk|Qk ∈ (14b), (14c)} is convex. And the real-
valued function fk(Qk,Q−k) is convex in Qk over the feasible set
Qk, whenever {Qj , j �= k} are fixed.

Based on Lemma 2, convergence is established next.

Proposition 2 The sequence of objective function values obtained
by the coordinate ascent Algorithm 1 converges.

Interestingly, by inspecting the structure of the channel matrices
{Hk,k, k ∈ K} of links {U t

k → Ur
k}, it is possible to show that

the coordinate ascent algorithm not only converges, but also that the
limit point satisfies the first-order optimality conditions as summa-
rized in the following theorem.

Theorem 1 If matrices Hk,k, k ∈ K, have full column rank, then
every limit point of Algorithm 1 is a stationary point of (P4).
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Fig. 1: Interference cumulative distribution function.

The proof of Theorem 1 is in the spirit of the convergence claim
of the block coordinate descent method in [14, Ch. 2], [5]. What is
basically needed to show is that the limit point of the algorithm sat-
isfies the first-order optimality conditions over the Cartesian product
of closed convex sets; see [13] for detailed proof.

5. NUMERICAL RESULTS

In this section, numerical results are presented to verify the perfor-
mance merits of the novel design. Four CR pairs and one PU re-
ceiver are considered, all are equipped with 2 antennas. The path
loss obeys the model d−η , with d the distance between nodes, and
η = 3.5. A flat Rayleigh fading model is employed. For simplicity,
the distances of links U t

k → Ur
k are all set to dk,k = 30 m; for the

interfering links {U t
k → Ur

j , j �= k} distances are uniformly dis-
tributed in the interval 30− 100 m. Finally, CR-to-PU distances are
uniformly distributed in 70− 100 m. The maximum transmit-power
and the noise power are identical for all CRs.

To validate the effect of the robust interference constraint, the
cumulative distribution functions (CDF) of the interference power
perceived by the PU are depicted in Fig. 1. Transmit-powers and
noise powers are set so that the signal-to-noise ratio defined as
SNR := pmax

k (d−η
k,k)/σ

2
k equals 10 dB. The total interference thresh-

old ιmax = 3 · 10−7 W is equally split among the CR transmitters.

The channel uncertainty is set to ε2k = 0.08 · ‖Ĝk‖2F . CDF curves
are obtained over 4, 000 independent channel realizations using
Monte Carlo simulations. As expected, the proposed robust scheme
enforces the interference constraint strictly. In fact, the interference
never exceeds the tolerable limit (shown as the vertical red dashed
line). On the contrary, its non-robust counterpart frequently violates
the interference limit (more than half of the times).

Fig. 2 illustrates the convergence of the proposed iterative al-
gorithm for a given channel realization with different SNRs. It is
clearly seen that the total MSE decreases monotonically across fast-
converging iterations.
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