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ABSTRACT
In this paper, we consider a single-user multiple-input single-output
(MISO) fading channel with training, and investigate optimal train-
ing and data transmission strategies for outage rate maximization.
The receiver obtains instantaneous channel estimates through train-
ing; while the transmitter knows only the statistical information of
the channel. We present analytical, closed-form solutions for the op-
timal training power and optimal data transmit covariance matrix.
In particular, explicit numbers of antennas required for optimal data
transmission are analyzed. Numerical results are presented to vali-
date our analysis.

Index Terms— multiple-input single-output, training design,
transmitter design, outage rate maximization.

1. INTRODUCTION

Multiple transmit antennas can improve the capacity of wireless fad-
ing channels, provided that the receiver knows the channel state in-
formation (CSI). To enable the receiver to learn the CSI, the trans-
mitter has to send training signals before data transmission. Given
a total energy constraint for training and data transmission, it is of
great importance to investigate optimal training and data transmis-
sion strategies for maximizing the system throughput [1].

In this paper, we consider a single-user wireless multiple-input
single-output (MISO) system. The channel between the transmitter
and the receiver is assumed to be independent and identically dis-
tributed (i.i.d.) Rayleigh faded, and remains unchanged during each
transmission block. Each transmission block consists of a training
phase, which enables channel estimation at the receiver, and a data
transmission phase. The transmitter is assumed to have no instanta-
neous CSI. Under the same system setup but with multiple antennas
at the receiver, optimal training and data transmission designs for er-
godic rate maximization have been studied in [1]. In contrast to the
ergodic performance, outage rate performance is more suitable for
delay-limited applications such as voice and video communications.
The data transmission strategies for optimal outage rate performance
is, however, quite different from that for optimal ergodic rate perfor-
mance, and is more difficult to analyze in general. In particular,
assuming perfect CSI at the receiver, it was first observed in [2] and
later proved in [3] that the optimal strategy for outage rate perfor-
mance is to use only a fraction of the total number of antennas for
data transmission, in contrast to its ergodic counterpart where using
all antennas is always optimal [2, 4]. However, analytic conditions
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for the required number of antennas for optimal data transmission
are still unknown in general [3].

Our focus in this paper is to study the joint training and data
transmission design problem for optimizing the outage rate perfor-
mance. In particular, we aim to jointly optimize the training power
and the data transmit covariance matrix in order to maximize the out-
age rate under a total energy constraint. It turns out that the optimal
training power for the outage rate maximization problem is identical
to that for the ergodic rate maximization problem studied in [1] and
has closed-form solutions. For the optimal data transmit covariance
matrix, we also present analytic closed-form solutions with explicit
number of antennas required for optimal data transmission. Our an-
alytic results extend upon the results in [3] by applying theorems
on the extremal probabilities of quadratic forms of Gaussian random
variables in [5]. Numerical results are presented to verify our theo-
retical claims.

2. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a single-user MISO wireless system, where the transmitter
is equipped with Nt antennas. We assume a block fading channel.
Specifically, the channel vector between the transmitter and the re-
ceiver, denoted by h ∈ C

Nt , is assumed to be circularly symmetric
complex Gaussian distributed with zero mean and covariance matrix
σ2
hINt

(an Nt ×Nt identity matrix), i.e., h ∼ CN (0, σ2
hINt

), and
the coefficients of h remain static in one transmission block but can
vary from block to block. Each transmission block consists of two
phases – a training phase with length Tc, followed by a data trans-
mission phase with length Td.

In the training phase, the transmitter sends a training signal to
enable channel estimation at the receiver. Assume that the transmit-
ter employs the optimal training scheme in [6], with Pc being the av-
erage training power, and that the receiver performs linear minimum
mean squared error (LMMSE) channel estimation. Denote ĥ ∈ C

Nt

as the LMMSE channel estimate, and ec = h− ĥ as the estimation
error vector. Both ec and ĥ are complex Gaussian distributed with
zero mean and covariance matrices σ2

eINt
and (σ2

h − σ2
e)INt

, re-
spectively [6], where

σ2
e =

(
1

σ2
h

+
TcPc

Ntσ2

)−1

, (1)

and σ2 is the additive Gaussian noise power at the receiver.
The receiver will use the channel estimate ĥ for data reception

in the data transmission phase. Since it is difficult to obtain exact
formulas for the channel capacity in the presence of channel estima-
tion error [1, 7], we consider achievable lower bounds that possess
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closed-form expressions. In particular, assuming that the input data
signal x(t) ∈ C

Nt has zero mean and covariance matrix Q � 0

(positive semidefinite), an achievable rate is given by [1, 7]

T̄d log2

(
1 +

ĥHQĥ

σ2
eTr(Q) + σ2

)
bits/sec/Hz, (2)

where T̄d = Td/(Tc + Td), and Tr(Q) is the trace of matrix Q.
The scenario under consideration is that there is no instanta-

neous channel estimate feedback from the receiver, and that the trans-
mitter knows only the statistical information of ĥ. Under such cir-
cumstances, our goal is to jointly optimize the training power Pc and
the transmit covariance matrixQ such that the ρ-outage rate, i.e., the
achievable rate for which the probability of rate outage is no larger
than ρ ∈ [0, 1), can be maximized. Mathematically, this outage
constrained design can be formulated as the following optimization
problem:

max
Q∈H

Nt ,Pc,R∈R

R (3a)

s.t. Prob

{
T̄d log2

(
1+

ĥHQĥ

σ2
eTr(Q) + σ2

)
<R

}
≤ρ,

(3b)

TcPc +Tr(Q)Td ≤ Emax, (3c)

Pc ≥ 0, R ≥ 0, Q � 0, (3d)

where Emax > 0 is the maximum energy constraint. The joint train-
ing and data transmission design problem in (3) is difficult to handle
due to the probability constraint (3b). In the next section, we show
how explicit solutions of Pc, Q and R for problem (3) can be ana-
lytically obtained.

3. OPTIMAL TRANSMISSION STRATEGY

As will be seen soon, the optimal Pc and Q can be obtained sepa-
rately; they are respectively presented in the subsequent two subsec-
tions.

3.1. Optimal Training Power Design

Let us express

Q = Tr(Q)Q̃ and ĥ =
(
σ2
h − σ2

e

)1/2
û (4)

where Q̃ � 0, Tr(Q̃) = 1, and û ∼ CN (0, INt
) are power nor-

malized counterparts of Q and ĥ, respectively. Note that the en-
ergy constraint (3c) will hold with equality when the optimal R is
achieved; otherwise one can always obtain a higher rate R by scal-
ing up Tr(Q). Hence one can write (3c) as

Tr(Q) = (Emax − TcPc)/Td. (5)

By (4) and (5), one can express problem (3) as

max
Pc,R≥0,

Q̃�0,Tr(Q̃)=1

R (6a)

s.t. Prob
{
T̄d log2(1+α(Pc)û

H
Q̃û)<R

}
≤ρ, (6b)

α(Pc) =
(σ2

h − σ2
e)(Emax − TcPc)/Td

σ2
e(Emax − TcPc)/Td + σ2

. (6c)
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Fig. 1: Maximum outage rate versus training power. The optimal
training power P �

c = 7.499 dB.

It is not difficult to verify from (6) that the optimal Pc, denoted
by P �

c , is the one that maximizes α(Pc). Interestingly, the optimal
training power for the rate outage maximization problem (3) is iden-
tical to that in [1] for ergodic rate maximization. A closed-form so-
lution of P �

c has been derived in [1, Theorem 2] and is summarized
in the following lemma:

Lemma 1 The optimal training power P �
c to problem (3) is given

by

P �
c =arg max

Pc≥0
α(Pc)=

⎧⎨
⎩

(1− ϕ1)Emax/Tc, Td > Nt,
Emax/(2Tc), Td = Nt,
(1− ϕ2)Emax/Tc, Td < Nt,

(7)

where ϕ1 = ξ −
√

ξ(ξ − 1), ϕ2 = ξ +
√

ξ(ξ − 1), and

ξ =
σ2Nt + σ2

hEmax

σ2
hEmax

(
1− Nt

Td

) . (8)

While the rate outage maximization problem in (3) and the er-
godic rate maximization problem in [1] have the same strategy in
allocating the training and data powers, as one will see later, the out-
age rate maximization problem (3) can have a very different data
transmission strategy from its ergodic counterpart in [1].

Before proceeding to the optimal Q̃, let us present a simulation
example demonstrating the importance of optimal training power de-
sign. Figure 1 displays the maximum outage rate versus training
power Pc, for Nt = 4, Tc = Nt, and Td = 40Nt. The chan-
nel variance σ2

h = 1, noise variance σ2 = 0.01, energy constraint
Emax = 164 (i.e., the average transmit power Emax/(Tc+Td) = 1),
and outage probability ρ = 0.1. The normalized data covariance ma-
trix Q̃ = (1/Nt)INt

, which will be shown to be the optimal strategy
under this simulation setting. One can observe from Fig. 1 that an
improper training power can result in dramatic rate reduction.

3.2. Optimal Transmit Covariance Matrix Design

Given the optimal training power P �
c , (6) can be simplified to

max
R≥0,

Q̃�0,Tr(Q̃)=1

R (9a)

s.t. Prob
{
T̄d log2(1+α(P �

c )û
H
Q̃û)<R

}
≤ρ. (9b)
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We can observe from problem (9) that the inequality constraint in
(9b) must hold with equality when the optimal Q̃ andR are achieved.
As a result, the optimal Q̃ must be the one that minimizes the proba-
bility function in (9b) since it always admits a higher outage rate R.
It follows from the two observations that

Pmin(γ
�) � min

Tr(Q̃)=1,Q̃�0

Prob
{
û

H
Q̃û ≤ γ�

}
= ρ, (10)

where

γ�
�

2R
�/T̄d − 1

α(P �
c )

, (11)

and R� denotes the optimal outage rate. According to (10) and (11),
once we can fully characterize Pmin(·), then the optimal outage rate
R� can be simply obtained as

R� = T̄d log2(1 + α(P �
c )P

−1
min(ρ)), (12)

where P−1
min(·) is the inverse function of Pmin(·).

We therefore focus on analyzing the following function

Pmin(x) = min
Tr(Q̃)=1,Q̃�0

Prob
{
û

H
Q̃û ≤ x

}
, (13)

where û ∼ CN (0, INt
). To this end, consider the eigenvalue de-

composition of Q̃ = UΛ̃UH , where U ∈ C
Nt×Nt is a unitary

matrix and Λ̃ ∈ R
Nt×Nt is a diagonal matrix with eigenvalues

λ̃1, . . . , λ̃Nt
≥ 0 being the diagonal elements. Since Gaussian ran-

dom variables are invariant with unitary transformation, the prob-
ability function in (13) can be written as Prob{ûH

Λ̃û ≤ x} =

Prob{
∑Nt

i=1 λ̃i|ûi|
2 ≤ x}, where ûi denotes the ith entry of û.

Further define vi ∼ N (0, 1), i = 1, . . . , 2Nt, as independent real-
valued Gaussian random variables and let

λ2k = λ2k−1 = λ̃k/2, k = 1, . . . , Nt. (14)

By the fact of |ûk|
2 = (v22k + v22k−1)/2, k = 1, . . . , Nt, Pmin(x)

in (13) can be expressed as

Pmin(x) = min
∑2Nt

i=1
λi=1,

λ2k=λ2k−1≥0,k=1,...,Nt

Prob

{
2Nt∑
i=1

λiv
2
i ≤ x

}
. (15)

It has been shown in [3] that Pmin(x) is the cumulative distri-
bution function (CDF) of a central chi-square random variable with
certain even number degrees of freedom (DoFs), say 1 ≤ d� ≤ 2Nt;
i.e.,

Pmin(x) = Prob

{
1

d�

d�∑
i=1

v2i ≤ x

}
. (16)

However, it is still not clear how to analytically determine d� in gen-
eral. Here we resolve this issue by presenting an exact expression of
Pmin(x). Our analysis relies on the fact of (16) and the theorems
on the extremal probabilities of quadratic forms of Gaussian random
variables in [5]. To elaborate upon this, we first define some useful
notations:

Definition 1 For positive integers d ≥ 1 and 	 ≥ 1, x(d, d+	) rep-
resents the point at which the CDFs Fd(x) � Prob

{
d−1χ2

d ≤ x
}

and Fd+�(x) intersect, where χ2
d denotes the central chi-square ran-

dom variable with d DoFs. The notation

p(d, d+ 	) = Fd(x(d, d+ 	)) = Fd+�(x(d, d+ 	)) (17)

represents the corresponding probability value of x(d, d+ 	).

Moreover, x(d, d+ 	) and p(d, d+ 	) have the following mono-
tonic properties:

Lemma 2 [5] i) x(d, d + 	) is unique, larger than one, and de-
creases to one as d increases; ii) p(d, d+ 	) is greater than 0.5, and
decreases to 0.5 as d increases.

By Lemma 2, we can define x(0, 	) � ∞ and p(0, 	) � 1 for
any 	. Precise values of x(d, d+	) and p(d, d+	) for d ≥ 1 and 	 ≥
1 can be computed numerically. Using the notations in Definition 1
and Lemma 2, we prove in Section 4 the following proposition on
the solution of (15).

Proposition 1 Pmin(x) in (15) is continuous and monotonically in-
creasing in x, and can be explicitly expressed as

Pmin(x) =

⎧⎨
⎩

F2n(x), ∀x ∈ [x(2n, 2n+ 2), x(2n− 2, 2n)),
n = 1, . . . , Nt − 1,

F2Nt
(x), ∀x ∈ [0, x(2Nt − 2, 2Nt)).

Proposition 1 shows that Pmin(x) is composed of F2n(x), n =
1, . . . , Nt in a piece-wise manner. Combining Proposition 1, Defini-
tion 1 and (10), and by the monotonicity of Pmin(x), we can obtain
explicit expression of P−1

min(ρ) as

P−1
min(ρ) =

⎧⎨
⎩

F−1
2n (ρ), ∀ρ ∈ [p(2n, 2n+ 2), p(2n− 2, 2n)),

n = 1, . . . , Nt − 1,
F−1
2Nt

(ρ), ∀ρ ∈ [0, p(2Nt − 2, 2Nt)).

(18)

Then the optimal outage rate R� of problem (3) can be obtained by
(18) and (12). Equation (18) also implies that the optimal DoFs in
(16) is given by

d� =

⎧⎨
⎩

2n, ∀ρ ∈ [p(2n, 2n+ 2), p(2n− 2, 2n)),
n = 1, . . . , Nt − 1,

2Nt, ∀ρ ∈ [0, p(2Nt − 2, 2Nt)).
(19)

With d�, the optimal Q̃ can be obtained as

Q̃
� = U

�
Λ(d�/2)(U�)H , (20)

whereU� ∈ C
Nt×Nt can be an arbitrary unitary matrix andΛ(d�/2)

∈ R
Nt×Nt is a diagonal matrix with the first d�/2 diagonal elements

being nonzero and equal to 2/d� (due to Tr(Q̃) = 1).
It is interesting to note from (19) and (20) that it is not necessary

to use all the DoFs for optimal data transmission, especially when ρ
is high; this result is in strong contrast to that in [2,4] for ergodic rate
maximization where it is shown that using all the available DoFs,
i.e., Q̃� = (1/Nt)INt

, is always optimal. One can also see from
(19) and (20) that for ρ ≥ p(2, 4) = 0.7153, d� = 2 and thus using
only one antenna for data transmission is sufficient to be optimal.
Conversely, when ρ < p(2Nt − 2, 2Nt) (where p(2Nt − 2, 2Nt) >
0.5), d� = 2Nt and hence the optimal transmission strategy is to
equally allocate powers to all Nt antennas. For the other cases, it
is sufficient to use only a fraction of Nt antennas for optimal data
transmission.

In Fig. 2, we present the simulation results of the outage rate
achieved by the optimal strategy in (19) and (20). The maximum
achievable outage rates of the single-antenna transmission strategy
(which corresponds to Q̃ = Λ(1)) and the all-antenna transmission
strategy (which corresponds to Q̃ = (1/Nt)INt

) are also presented.
We can see from this figure that the numerical results are consistent
with our analytical results presented in this subsection.
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Fig. 2: Maximum outage rate versus outage probability ρ of different
transmission strategies. Nt = 10, Tc = Nt, Td = 40Nt, σ2

h = 1,
σ2 = 0.01, and Emax/(Tc + Td) = 1.

4. PROOF OF PROPOSITION 1

We first review some important analysis results in [5]. Specifically,
in [5], it was shown that the following function

P̄min(x) � min
λi≥0, i=1,...,2Nt,

∑2Nt

i=1
λi=1

Prob

{
2Nt∑
i=1

λiv
2
i ≤ x

}
, (21)

where vi ∼ N (0, 1), is continuous and monotonically increasing,
and has a closed-form expression as

P̄min(x) =

⎧⎨
⎩

Fd(x), ∀x ∈ [x(d, d+ 1), x(d− 1, d)),
d = 1, . . . , 2Nt − 1,

F2Nt
(x), ∀x ∈ [0, x(2Nt − 1, 2Nt)).

(22)

Figure 3 illustrates P̄min(x). However, the above result is not di-
rectly applicable to (15) since the latter has the additional constraint
of λ2k = λ2k−1 ≥ 0, k = 1, . . . , Nt. By the fact of (16), this con-
straint is equivalent to limiting the optimal d� to be an even number.
Therefore, for the case of x ∈ [x(2n, 2n+1), x(2n−1, 2n)), where
n ≥ 1 is an integer, we can directly obtain from (22) that d� = 2n;
i.e.,

Pmin(x) = F2n(x) ∀x ∈ [x(2n, 2n+ 1), x(2n− 1, 2n)). (23)

Now let us consider the case of x ∈ [x(2n − 1, 2n), x(2n −
2, 2n− 1)). We have to choose 1 ≤ d ≤ 2Nt among even numbers
such that Fd(x) is minimum in the interval [x(2n− 1, 2n), x(2n−
2, 2n− 1)). We will use the following lemma:

Lemma 3 [5, Proposition 1′] For any integers d2 > d1 > 0, there
exists a unique point x(d1, d2) ∈ [x(d2−1, d2), x(d1, d1+1)] such
that Fd2(x) ≥ Fd1(x) for x ≥ x(d1, d2), and Fd2(x) < Fd1(x)
for x ∈ (0, x(d1, d2)).

Let d̃ > 2n be an even number. By Lemma 3, there exists a point
x(2n, d̃) ∈ [x(d̃− 1, d̃), x(2n, 2n+1)) such that Fd̃(x) ≥ F2n(x)

for x ≥ x(2n, d̃), and Fd̃(x) < F2n(x) for x ∈ (0, x(2n, d̃)), i.e.,
x(2n, d̃) is the crossing point. Therefore, F2n(x) is the minimum

p(d−1, d)
p(d, d+1)

p(d+1, d+2)

p(2Nt−1, 2Nt)

...

0.5

P̄min(x)

1 x(2Nt−1, 2Nt) · · · x(d+1, d+2) x(d, d+1) x(d−1, d)
x

0

Fd+1(x)

Fd(x)

F2Nt(x)

Fig. 3: Illustration of P̄min(x) in (22).

CDF in the interval [x(2n−1, 2n), x(2n−2, 2n−1)) compared to
any other Fd̃(x) with even number d̃ > 2n. Analogously, one can
show that F2n−2(x) is the minimum CDF in the interval [x(2n −
1, 2n), x(2n− 2, 2n − 1)) compared to any other Fd̃(x) with even
number d̃ < 2n− 2.

What remains is to choose between F2n(x) and F2n−2(x). Ap-
plying Lemma 3 to F2n(x) and F2n−2(x) again, we can obtain that
there exists a point x(2n−2, 2n) ∈ [x(2n−1, 2n), x(2n−2, 2n−
1)) such that F2n(x) ≥ F2n−2(x) for x ≥ x(2n − 2, 2n), and
F2n(x) < F2n−2(x) for x ∈ (0, x(2n− 2, 2n)). This implies that

Pmin(x) = F2n(x) ∀x ∈ [x(2n− 1, 2n), x(2n− 2, 2n)). (24)

By using similar argument to the interval [x(2n+1, 2n+2), x(2n, 2n
+ 1)), we can also obtain

Pmin(x) = F2n(x) ∀x ∈ [x(2n, 2n+ 2), x(2n, 2n+ 1)). (25)

Combining (23), (24), and (25), we conclude with

Pmin(x) = F2n(x) ∀x ∈ [x(2n, 2n+ 2), x(2n− 2, 2n)), (26)

for n = 1, . . . , Nt − 1, and

Pmin(x) = F2Nt
(x) ∀x ∈ [0, x(2Nt − 2, 2Nt)). (27)

The proof is thus completed. �
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