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ABSTRACT

We consider the problem of weighted sum rate optimization in
a MIMO interfering multiple access channel (IMAC). We propose
to jointly optimize the users’ linear procoders as well as their base
station (BS) associations. This approach enables the users to avoid
congested BSs and can improve system performance as well as user
fairness. We formulate the problem into a noncooperative game, and
develop an algorithm that allows the players to distributedly reach
the Nash Equilibrium (NE) of the game. We show that every NE
of the game is a stationary solution of the weighted sum rate opti-
mization problem, and propose an algorithm to compute the NE of
the game. Simulation results show that the proposed algorithm per-
forms well in the presence of BS congestion.

Index Terms— MIMO, Base Station Assignment, Linear Pre-
coder Design, Game Theory

1. INTRODUCTION

We consider a general MIMO-IMAC in which a set of transmitters
send data to their intended BSs at the same time. Both the transmit-
ters and the BSs are equipped with multiple antennas. Such channel
model is important as it can accurately describe many practical net-
works, e.g., the uplink of multicell heterogenous networks, in which
the transmitters may represent either mobile users or the relays. The
MIMO-IMAC is a generalization of the MIMO interference channel
(IC), in which each BS has only one associated transmitter.

The problem of optimal transceiver design of MIMO-IC has
been extensively studied recently. The authors of [1], among others,
formulate the transmission covariance matrix optimization problem
into a noncooperative game, in which the transmitters/users compete
with each other for transmission. Simple distributed algorithms with
convergence guarantees are derived, but the outcome of the game is
inefficient in terms of system performance. This is due to the lack
of coordination among the transmitters/users. Instead of the com-
petitive design, one can optimize the system performance measured
by some suitable system utility functions. However, these problems
have been proven to be NP-complete in general [2]. As a result,
many authors focus on developing high quality algorithms to com-
pute sub-optimal solutions for these problems. Reference [3] pro-
poses a local linear approximation algorithm based on first order
Taylor expansion of the weighted sum rate objective. The algorithm
allows the transmitters/users to update their transmission covariance
matrices by solving a series of convex optimization problems. How-
ever no convergence result has been given. Reference [4] proposes
a weighted Minimum Mean Square Error (WMMSE) algorithm in
which the transmitters and receivers iteratively update their linear
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transmission and receiving strategies to optimize the system utility
function. The authors show that as long as the system utility function
satisfies some regularity conditions, their algorithm is guaranteed to
converge to a stationary point of the problem.

All the above cited works aim at optimizing the linear transceiver
structures assuming that the transmitter-receiver association is
known and fixed. In our considered IMAC setting though, BS
assignment becomes an important optimization variable. In the
future heterogenous network, the cell sizes will become smaller,
and the deployment of access points such as macro/pico/femto BSs
will become denser. In this network configuration, the traditional
strongest BS association approach is insufficient for congestion
management and fairness provisioning [5]. Consequently, optimal
BS assignment becomes a crucial aspect in the overall system per-
formance optimization. The problem of joint cell site selection
and power allocation in the traditional CDMA based network has
been first considered in [6] and later in a game theoretical perspec-
tive in [7]. Recently [8] has considered the joint BS selection and
power allocation in an OFDM network in which the BSs operate
on non-overlapping spectrum. Our considered MIMO-IMAC is a
generalization of all the network settings of the above referenced
work and their approaches do not apply here.

In this work we formulate the joint linear precoder optimiza-
tion and BS selection problem in a game theoretical framework. In
our formulation both the transmitters and the BSs are the players of
the game. Each transmitter aims at finding the best linear precoder
as well as the least congested BS for transmission. Each BS com-
putes a set of optimal prices to charge the transmitters for causing
interference. These prices serve to coordinate the behavior of the
transmitters so that they do not cause excessive interference. One
advantage of our game theoretical formulation is that it naturally in-
corporates the joint optimization of BS association and linear pre-
coder into individual transmitters’ optimization problem. Moreover,
our formulation allows us to find desirable operation points of the
network such that: 1) the system is stable, in the sense that no single
transmitter is willing to change its BS association; 2) the transmis-
sion strategies of the users are efficient, in the sense that they achieve
a local optimal solution of the overall weighted sum rate objective.

2. TRANSMIT COVARIANCE OPTIMIZATION GAME
FOR FIXED USER-BS ASSOCIATION

We consider a general MIMO IMAC with a set N = {1, · · · , N}
of users/transmitters that transmit to a set Q = {1, · · · , Q} of BSs.
For clarity of presentation, in this section we only consider fixed net-
work topology in which each user/transmitter has its fixed intended
BS. The general case with flexible association will be discussed in
the next section. Define a N × 1 vector a to represent the system
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association profile, an = q means user n connects to BS q. We will
refer to a transmitter as a user in the sequel.

Suppose each user n ∈ N has Tn transmit antennas and each BS
q ∈ Q has Rq receive antennas. Let Hq,n ∈ C

Rq×Tn be a Rq × Tn

channel matrix which represents the channel gain from transmitter
n to receiver q. Assuming Tn ≤ Rq for all n ∈ N and all q ∈ Q,
or equivalently the channel matrices {Hq,n} are tall matrices. This
assumption is natural as the number of antennas at the BS shoule
be larger than that of the mobile stations. Let xn ∈ C

Tn be the
transmitted signal of user n. Let yq ∈ C

Rq be the received signal of
BS q. Then yq can be expressed as

yq =
X
n∈N

Hq,nxn + zq (1)

where zq ∼ CN (0, σ2
qIRq ) is an additive white Gaussian noise vec-

tor. Define the data symbol vector for user n to be sn ∈ C
Tn , i.e.,

there are a maximum of Tn streams for user n. We assume that a
linear precoder Pn ∈ C

Tn×Tn is used for the transmission, and the
transmitted vector of user n is xn = Pnsn. Assume that the data
symbols are independent and have unit variance, i.e., E[snsH

n ] =
ITn . Then the transmit covariance matrix Sn for user n is given
by Sn � E[xnxH

n ] = PnPH
n ∈ S

Tn
+ , where S

TN
+ denote the set

of TN × TN hermitian semi-definite matrices. Once the covariance
matrix Sn is obtained, the precoder can be calculated by Cholesky
decomposition. Define the system joint transmission covariance and
the joint covariance excluding user n as: S � {Sn}n∈N , S−n �

{Sm}m�=n,m∈N . Then the interference covariance matrix for user n
(at its intended BS an), denoted by Cn(S−n), can be expressed as

Cn(S−n) � σ2
an

IRan
+

X
m�=n

Han,mSmH
H
an,m.

Assuming Gaussian signaling and treating the interference as noises,
the achievable rate for user n is given by [9]

Rn(Sn,S−n) = log
˛̨̨
IRan

+ Han,nSnH
H
an,nC

−1
n (S−n)

˛̨̨
. (2)

The weighted system sum rate with the set of weights {wn}
N
n=1 can

be expressed as R(S) �
P

n∈N wnRn(Sn,S−n). We aim at de-
signing a noncooperative game with efficient equilibrium solution in
terms of the sum rate of the system. Given a set of individual average
power constraints of of the form E[Tr(xnxH

n )] = Tr(Sn) ≤ p̄n, the
weighted sum rate maximization problem (WSRM) can be stated as

max
S

R(S) (WSRM)

s.t. Tr(Sn) ≤ p̄n, Sn ∈ S
Tn
+ , ∀ n ∈ N .

We let each user n ∈ N have the ability to change its own Sn.
Define its feasible set as

Fn � {Sn|Tr(Sn) ≤ p̄n, Sn ∈ S
Tn
+ }. (3)

Define the joint feasible set of all the users as: F �
Q

n∈N Fn.
Due to the fact that all the users share the same spectrum, their

individual transmissions cause interference at the non-intended BSs.
In order to mitigate such interference, we allow each BS q ∈ Q to
post a (matrix valued) price Tq,n ∈ S

Rq

+ to each user n ∈ N . Define

Hq =
Q

n∈N S
Rq

+ as the feasible set of BS q’s pricing strategies.

Define H �
Q

q∈Q Hq as the joint feasible set of all the BSs. Let
Tq = {Tq,n}n∈N , Tn = {Tq,n}q∈Q, and T = {Tq}q∈Q.

We model the users and the BSs as selfish agents, who are in-
terested in choosing the optimal strategies (transmission covariances
for the users, and price matrices for the BSs) to maximize some prop-
erly defined utility functions. Let Un(.) and Dq(.) denote the user n
and BS q’s utility functions, respectively. We formulate a covariance
optimization game GC as follows

GC
�

j
{N ,Q},

˘
F ,H

¯
,
˘
{Un(.)}n∈N , {Dq(.)}q∈Q

¯ff
.

The aim of the game design is to properly specify the utility func-
tions so that the game GC induces efficient equilibrium in terms of
the weighted system sum rate.

We first investigate the structure of the interference prices. De-
fine Nq � {n : an = q} as the set of users associated with BS
q. At a given system covariance profile S ∈ F , user n’s marginal
influence to the rates the set of users m ∈ Nq \ n is given byX
m∈Nq\n

�SnwmRm(Sm,S−m)

=
X

m∈Nq\n

wmH
H
q,nC

−1
m (S−m)

“
IRq + Hq,mSmH

H
q,mC

−1
m (S−m)

”−1

× Hq,mSmH
H
q,mC

−1
m (S−m)Hq,n (4)

It is then natural to let BS q charge each user n ∈ N with its
marginal influence. We define BS q’s utility function as

Dq(Tq, T−q, S) � −
X
n∈N

˛̨˛̨
Tq,n−

X
m∈Nq\n

�SnwmRm(Sm,S−m)
˛̨˛̨

. (5)

Clearly, for a fixed set of S ∈ F , the set of Tq that maximizes BS
q’s utility is of the following form

Tq,n(S) =
X

m∈Nq\n

�SnwmRm(Sm,S−m). (6)

For a set of fixed S ∈ F , the interference price Tq,n(S) can be com-
puted locally at BS q. We will occasionally make the dependency of
Tq,n on all the users’ covariance matrices explicit, as in the above
expression. We note that this pricing idea is a generalization of [10],
which consider a simpler IC with parallel channels.

We define user n’s utility function Un(.) as the difference be-
tween its transmission rate and the total prices charged by the BSs

Un(Sn,S−n,Tn) = wnRn(Sn,S−n) −
X
q∈Q

Tr [Tq,nSn] . (7)

This utility function is a concave log det plus linear function of
Sn. Finding the optimal covariance S∗

n (assuming S−n and Tn are
known and fixed) falls in the category of determinant maximization
problem (MAXDET), which is a convex optimization problem and
can be solved efficiently [11].

In the following we show that the above design of the utility
functions gives us a nice relationship between the utility of the users
and the weighted system sum rate.
Proposition 1 For any Sn, bSn ∈ Fn and any bS−n ∈ F−n, we
have the following implication

Un(Sn, bS−n,Tn(bS)) − Un(bSn, bS−n,Tn(bS)) > 0

=⇒ R(Sn, bS−n) − R(bSn, bS−n) > 0. (8)

The following lemma is needed to prove Proposition 1.
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Lemma 1 User m’s achievable rate Rm(Sm,S−m) is a convex
function of Sn for each n �= m.

Let S
Tn denote the set of all Tn ×Tn Hermitian matrices. Lemma 1

can be shown by checking that for all D ∈ S
Tn and Sn +tD ∈ S

Tn
+ ,

the following function is convex in the constant t

Rm(t) � log
˛̨
IRq+Hq,mSmH

H
q,m

“
Cm(S−m)+ tHq,nDH

H
q,n

”−1̨˛.
Proposition 1 can be proved by the following main steps. Fixed any
S ∈ F and bS ∈ F . Let R−n(Sn,S−n) �

P
m�=n wmRm(Sm,S−m).

Using Lemma 1, we can lower bound R−n(Sn, bS−n) at bS as

R−n(Sn, bS−n) ≥ Ln(bS) −
X
q∈Q

Tr
h
Tq,n(bS)Sn

i
(9)

where Ln(bS) is a constant that is only related to bS. The equality in
(9) is achieved when Sn = bSn. Utilizing (9), we can show

Un(Sn, bS−n,Tn(bS)) − Un(bSn, bS−n,Tn(bS))

≤ R(Sn, bS−n) − R(bSn, bS−n). (10)

Then (8) immediately follows.
We mention that the property (8) is reminiscent of the general-

ized potential property 1 for a wide range of games referred to as
Potential Games [12], with the subtle difference that in (8) the im-
plication is dependent upon a “state variable” Tn(bS).

Now that we have a complete characterization of the utility func-
tions, we are ready to investigate the properties of the pure NE of the
game GC . A pure strategy NE of the game GC is a tuple of strategies
{S∗,T∗} such that the following set of inequalities are satisfied

Un(S∗
n,S∗

−n,T∗
n) ≥ Un(Sn,S∗

−n,T∗
n), ∀ Sn ∈ Fn, ∀ n ∈ N

Dn(T∗
q ,T∗

−q,S
∗) ≥ Dn(Tq,T

∗
−q,S

∗), ∀ Tq ∈ Hq, ∀ q ∈ Q.

By utilizing Proposition 1, we have the following characterization of
the NEs of game GC .
Theorem 1 (S∗,T∗) is a NE of the game GC if and only if S∗ is a
KKT point of the problem (WSRM).

3. JOINT BS SELECTION AND TRANSMIT COVARIANCE
OPTIMIZATION GAME

When allowing each user n ∈ N to have the ability to optimize
both its transmission covariance and BS association, we define its
joint strategy as Jn � (Sn, an), and define its feasible space as
Jn = Fn×Q. Let J−n � (S−n,a−n), and J � {Jn}n∈N . In this
case, each user’s rate is still defined as in (2), but we have to make
the dependency of association profile explicit. We use Rn(Jn,J−n)
to denote user n’s rate. Let Nq(a) denote the set of users associ-
ated with BS q under association profile a. Moreover, the sum rate
maximization problem is also dependent on the underlying user-BS
association. We use WSRM(a) to indicate such dependency.

Let Ūn(.) and D̄q(.) denote user n and BS q’s utility functions,
respectively. The joint BS selection and precoder optimization game
GJ is defined as

GJ
�

j
{N ,Q},

˘
J ,H

¯
,
˘
{Ūn(J,Tn)}n∈N , {D̄q(T,J)}q∈Q

¯ff
.

1The generalized potential property is referred to the following relation-
ship between the users’ utility function and a “potential function” P (.):
let xn be player n’s action profile; for any two bxn, xn ∈ χn, for all
x−n ∈ χ−n, and for all player n, Un(bxn,x−n) − Un(xn, x−n) > 0
implies P (bxn, x−n) − P (xn,x−n) > 0.

We refer to the game GJ as a hybrid game, because the strategies of
a subset of the players consist of a continuous matrix and a discrete
index. We define the utility functions Ūn(.) and D̄q(.) similarly as
in (7) and (5)

Ūn(Jn, J−n,Tn) � Rn(Jn,J−n) −
X
q∈Q

Tr [Tq,nSn] .

D̄q(Tq,T−q,J) � −
X
n∈N

˛̨˛̨
Tq,n −

X
m∈Nq(a)\n

�SnwmRm(Jm,J−m)
˛̨˛̨

.

Note that both utility functions defined above are dependent on the
user-BS association vector a. On the one hand user n’s transmission
rate is different when it associates to different BSs. On the other
hand BS q charges a user n for the interference caused to all the users
that are currently associated to it. Similarly to the previous case, in
order to emphasize the relationship between the optimal solution of
BS q and the users’ strategies J, we occasionally use Tq,n(J) or
Tq,n(S,a) to denote the optimal prices charged by BS q to user n
via maximizing its utility.

The pure NE of the game GJ is the tuple (J∗,T∗) that satisfies

Ūn (J∗
n,J∗

−nT
∗
n) ≥ Ūn (Jn,J∗

−n,T∗
n) , ∀ Jn ∈ Jn, ∀ n ∈ N

D̄q(T
∗
q ,T

∗
−q,J

∗) ≥ D̄q(Tq,T
∗
−q,J

∗), ∀ Tq ∈ Hq , ∀ q ∈ Q.

The following proposition is instrumental in characterizing the pure
NE of game GJ .

Proposition 2 For any Jn, bJn ∈ Jn and bJ−n ∈ J−n, we have that

Ūn

“
Jn, bJ−nTn(bJ)

”
− Ūn

“bJn, bJ−nTn(bJ)
”

> 0 (11)

=⇒ R
“
Jn, bJ−n

”
− R

“bJn, bJ−n

”
> 0. (12)

Proof (sketch): The following identities can be proved

Rm((bSn,an), bJ−n) = Rm((bSn, ban), bJ−n), ∀ m �= n (13)

Tn(bS, ba) = Tn(bS, [an, ba−n]). (14)

This set of equations says that if user n unilaterally switches from
BS ban to an but keeps its covariance matrix unchanged, then all
other users’ transmission rates as well as the price charged for user
n do not change. Using (14) and (10), we can show that

Ūn

“
(Sn, an), bJ−n,Tn(bS, ba)

”
−Ūn

“
(bSn, an), bJ−n,Tn(bS, [an, ba−n])

”

≤ R((Sn, an), bJ−n) − R((bSn,an), bJ−n) (15)

Utilizing (13) and (14), we can show that

Ūn

“
(bSn, an), bJ−n,Tn(bS, [an, ba−n])

”
−Ūn

“
(bSn, ban), bJ−n,Tn(bS, ba)

”

= Rn((bSn,an), bJ−n) − Rn((bSn, ban), bJ−n)

= R((bSn,an), bJ−n) − R((bSn, ban), bJ−n). (16)

Combining (15) and (16), we obtain the desired inequality. �

Due to the hybrid structure of the strategy space of the users,
conventional existence results of the NE for a N-person concave
game do not apply here. Proposition 2 is used to derive the following
existence result of the NE of game GJ .
Theorem 2 The game GJ must admit at least a pure NE. Moreover,
if (S∗,a∗,T∗) is a NE of the game GJ , then S∗ must be a KKT
solution of the problem WSRM(a∗).
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S1) Initialization: Let t = 0, each user n ∈ N randomly choose J
0
n ∈ Jn;

each BS q ∈ N set T0
q = 0.

S2) Message Passing: Randomly choose a user n ∈ N to act at time t.
Each BS q ∈ Q, q �= a

t
n sends the price term T

t
q,n for user n to BS a

t
n.

The BS at
n feeds user n the sum of all prices

P
q∈Q Tt

q,n.
S3) User Utility Maximization: User n computes its best-reply strategy

J
t+1
n by solving:

(St+1
n ,a

t+1
n ) = arg maxq∈Q maxSn∈Fn

Ūn((Sn, q), St
−n, at

−nT
t
n).

For the rest of users m �= n, set Jt+1
m = Jt

m.
S4) BS Utility Maximization: Each BS q ∈ Q updates its price matrices by

T
t+1
q,n =

P
m∈Nq(at+1),m�=n �Sn

wmRm(St+1
m ,St+1

−m), ∀ n ∈ N

S5) Continue: Set t = t + 1, go to S2) unless some stopping criteria is met.

Table 1. The Proposed Algorithm

In Table 1, we propose an algorithm that allows the entities in
the network to distributedly reach the NEs of GJ .

The optimization in S3) can be performed locally by user n in
the following steps: a) for each BS q ∈ Q, obtain the current in-
terference levels σ2

qIq +
P

m�=n
Hq,mSt

mHH
q,m; b) solve Q inner

optimization problems using this interference information as well as
the current total price

P
q∈Q Tt

q,n (note that each of these problems
is again a MAXDET problem); c) pick the best BS in terms of the
optimal value of the inner problem.

We have the following result regarding to the convergence of the
above algorithm.

Theorem 3 The sequence {R(St,at)}∞t=1 generated by the pro-
posed algorithm is monotonically increasing and always converges.
Any limit point of {St,at,Tt}∞t=1 is a NE of the game GJ .

4. NUMERICAL RESULTS

In this section, we compare the performance of the proposed algo-
rithm with the WMMSE algorithm proposed in [4]. We consider
a network with 7 BSs and 16 users. The distance between adja-
cent BSs is 200 meters (representing a dense network of small cell
size). Let dq,n be the distance between BS q and user n. The entries
of the channel Hq,n are generated from distribution CN (0, σ2

q,n).
The standard deviation is calculated by σq,n = (200/dq,n)3.5 Lq,n,
where 10 log 10(Lq,n) ∼ N (0, 8) models the shadowing effect. We
fix the environment noise power as σq = 1 for all q ∈ Q, and define
the SNR as 10 log10 p̄n.

We focus on the situation where the users are all located at the
cell edges, and one of the BSs is congested. We place half of the
users uniformly at the cell edges of BS 1, which is within dm,i ∈
[90, 100] meters of BS 1. We place the rest of the users randomly
at the cell edges of other BSs. For the WMMSE algorithm, we let
the users associate to the BSs with the highest channel magnitude
(in terms of the 2-norm of the channel matrices). For our proposed
algorithm, we limit the users to be able to choose their association
among the three strongest BSs.

Fig. 1 demonstrates the performance of the proposed algorithm
in terms of the system sum rate (with wn = 1 for all n). Each point
on this figure is averaged over 100 random generation of users’ po-
sitions and channel coefficients. It can be seen that the proposed
algorithm achieves higher sum rate than the WMMSE algorithm.
Fig. 2 compares the CDF of the individual rates of the two algo-
rithms when SNR=30dB. Our simulation shows that the joint linear
precoder optimization and BS selection can achieve higher degree of
user fairness than the WMMSE algorithm.
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Fig. 1. Comparison of the sum rate of the proposed algorithm and the
WMMSE algorithm.
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and the WMMSE algorithm.
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