
DISTRIBUTED BACK-PRESSURE POWER CONTROL FOR WIRELESS MULTI-HOP
NETWORKS

E. Matskani∗

Dept. of ECE
Tech. Univ. of Crete

73100 Chania - Crete, Greece

N.D. Sidiropoulos†

Dept. of ECE
Univ. of Minnesota

Minneapolis, MN 55455, USA

L. Tassiulas‡

Dept. of CE & T
Univ. of Thessaly

38221 Volos, Greece

ABSTRACT

A key problem in wireless networking is how to choose a link ac-
tivation schedule and associated powers in concert with routing de-
cisions to optimize throughput. Back-pressure control policies are
optimal in this context, but the underlying power control problem
is non-convex. Back-pressure power control (BPPC) was recently
shown to be NP-hard, yet amenable to successive convex approxi-
mation strategies that deliver manifold improvements in end-to-end
throughput relative to the prior art in wireless networking. A draw-
back is that existing implementations are centralized, whereas prac-
tical power control has to be distributed across the network. This pa-
per fills this gap by developing a distributed version of the core step
of successive convex approximation of the BPPC problem, building
upon the Alternating Direction Method of Multipliers (ADMoM).
The resulting protocol enjoys favorable properties relative to dual
decomposition - based implementations, and allows tight approxi-
mation of the BPPC objective in all interference regimes. Judicious
simulations reveal that the proposed algorithm matches the perfor-
mance of its centralized counterpart, as well as pertinent trade-offs
in terms of the design parameters.
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1. INTRODUCTION
Back-pressure routing is well-appreciated for its throughput opti-
mality and conceptual simplicity, since its introduction in the early
90’s [11, 10]. More recently (e.g., see [5] and references therein)
it has attracted considerable interest in the context of cross-layer
wireless networking. We consider the back-pressure power control
problem for maximal end-to-end throughput in a wireless multi-hop
network. At the physical layer, for each scheduling slot, the core
back-pressure power control (BPPC) problem amounts to maximiz-
ing a differential backlog-weighted sum of link rates. This was re-
cently shown to be NP-hard in [6], which also explored effective
successive convex approximation strategies. A drawback is that the
solution in [6] is centralized. The contribution of this paper is a dis-
tributed implementation of the successive convex approximation ap-
proach in [6], using the Alternating Direction Method of Multipliers
(ADMoM) [1, 2]. Towards this end, the core step is distributed im-
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plementation of the convex lower-bounding approximation of BPPC
at any operating point.

Distributed approximation of the weighted sum-rate maximiza-
tion problem has been considered in [3], in the high-SINR (Sig-
nal to Interference plus Noise Ratio) regime and using a dual de-
composition approach [3]. Very recently, [8] proposed an itera-
tively re-weighted Minimum Mean Square Error (MMSE) approach
to weighted sum rate maximization for the MIMO interference chan-
nel. The algorithm in [8] provides a one-shot approximate solution
to the weighted sum rate maximization problem - it cannot be tuned
to approximate the problem around different operating points, as
needed for successive convex approximation.

Instead of employing dual decomposition as in [3], here we use
an Alternating Direction Method of Multipliers (ADMoM) approach,
in light of its favorable convergence properties [1, 2]. Further em-
ploying a consensus-on-the-min algorithm [4, 9] to reach agreement
among links regarding the termination of iterations, we come up with
a fully decentralized and promising, performance-wise, algorithm.

2. SYSTEM MODEL AND PROBLEM STATEMENT
We consider a wireless multi-hop network comprising N nodes, mod-
eled by the directed graph (N ,L), where N := {1, . . . , N} and
L := {1, . . . , L} denote the set of nodes and the set of links, respec-
tively. Each link � ∈ L corresponds to an ordered pair (i, j), where
i, j ∈ N and i �= j. By Tx(�) and Rx(�) we denote the transmitter
and the receiver of link �, thus, for link � = (i, j), Tx(�) = i and
Rx(�) = j. We assume that any node can transmit data to any other
node, and may also split its incoming traffic into multiple outgoing
links. Crosstalk factors Gk� denote the aggregate path loss between
the transmitter of link k and the receiver of link �; p� denotes the
power transmitted on link �, V� the background noise power at the
receiver of link �, and G the spreading gain, if any (absorbed in the
Gk�’s in the sequel, for brevity). Then, the SINR attained at the
receiver of link � is

γ� =
G��p�

1
G

∑L
k=1
k �=�

Gk�pk + V�

,

and the link rate is

c� = log(1 + γ�).

We assume a unit time slotted system, indexed by t, and denote
by D�(t) the differential backlog of link � ∈ L at the end of slot t,
as defined in [11, 6]. In case of multiple flows, D�(t) is the max-
imum over all flows traversing link �, i.e., with obvious notation,

D�(t) := maxfD
(f)
� (t). Then, the BPPC problem under per link
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power constraints is [11, 10, 5, 6]

max
{0≤ p�≤P�}�∈L

L∑
�=1

D�(t)c�.

In [6], after lower-bounding link rates at slot t (using an idea
from [7]) as log(1 + γ�) ≥ α�(t) log(γ�) + β�(t), and applying a
logarithmic change of variables, the following convex approximation
of BPPC is proposed (see [6] for details)

max
{p̃�≤P̃�}�∈L

L∑
�=1

D�(t)c� (1)

where

c� := α�(t)

⎛
⎜⎝G̃�� + p̃� − log

⎛
⎜⎝

L∑
k=1
k �=�

eG̃k�+p̃k + eṼ�

⎞
⎟⎠

⎞
⎟⎠+ β�(t),

p̃� := log p�, P̃� := log(P�), G̃k� := log(Gk�), Ṽ� := log(V�), and
the parameters α�(t) and β�(t) are chosen to make the lower bound
tight at a feasible point obtained in the previous iteration. Our aim
here is to solve an arbitrary instance of (1), for any t, D�(t), α�(t),
and β�(t), in a distributed fashion. In the sequel, we omit the index
t from all quantities, for brevity.

3. DISTRIBUTED IMPLEMENTATION
In order to solve (1) in a distributed fashion, we would ideally like
each link � to be able to optimize its own variable p̃�, relying on as
low-rate feedback as possible from other links. The core problem
could then split into L subproblems that could be solved in parallel.
Yet, this is not directly possible, due to the coupling of the power
variables in the objective of (1). As a first step, we may shift this cou-
pling from the objective to the constraints, by introducing auxiliary
variables {̃i�k}k �=� to represent the interference that link � receives

from link k �= �, and equality constraints G̃k� + p̃k = ĩ�k, ∀k �=
�, ∀� ∈ L; e.g., cf. [3, 9]. This yields

min
p̃,

{̃
i�

}
�∈L

L∑
�=1

−D�α�

(
G̃�� + p̃�

)

+D�α� log

⎛
⎜⎝

L∑
k=1
k �=�

eĩ�k + eṼ�

⎞
⎟⎠−D�β� (2)

subject to G̃k� + p̃k = ĩ�k, ∀k �= �, ∀� ∈ L, (3)

subject to p̃� ≤ P̃�, � ∈ L, (4)

where p̃ denotes the vector of variables {p̃�}�∈L, ĩ� the vector of

auxiliary variables
{
ĩ�k

}
k �=�

of link �. Note that p̃� and
{
ĩ�k

}
k �=�

are local variables of link �.
We will use the ADMoM with the dual ascent method [1], in

order to solve (2)–(4) in a decentralized fashion. A key step is to
exploit the decomposable structure of the augmented Lagrangian
corresponding to (2)–(4). For link �, we let {γ�k}k �=� denote the
Lagrange multipliers associated with its local equality constraints
G̃k� + p̃k = ĩ�k, ∀k �= �, and λ� the Lagrange multiplier associ-
ated with the inequality p̃� ≤ P̃�. The augmented Lagrangian with
penalty parameter ρ, is given by

Lρ =
L∑

�=1

⎛
⎜⎝−D�α�

(
G̃�� + p̃�

)
+D�α� log

⎛
⎜⎝

L∑
k=1
k �=�

eĩ�k + eṼ�

⎞
⎟⎠

−D�β� + λ�

(
p̃� − P̃�

)
+

L∑
k=1
k �=�

γk�G̃�k + p̃�

⎛
⎜⎝

L∑
k=1
k �=�

γk�

⎞
⎟⎠

−
L∑

k=1
k �=�

γ�k ĩ�k

⎞
⎟⎠+

ρ

2

L∑
�=1

L∑
k=1
k �=�

(
G̃k� + p̃k − ĩ�k

)2

. (5)

Note that p̃� and
{
ĩ�k

}
k �=�

are local primal variables for link

�, while, λ� and {γ�k}k �=� are its local dual variables. Denoting
by s the iteration index, and applying ADMoM’s optimization steps

for the update of variables p̃,
{
ĩ�
}

�∈L
, and {γ�k}�∈L,k �=�, and a

projected gradient step for λ, the iterates to be carried out at each
link � ∈ L boil down to

p̃�(s) := argmin
p̃�

−D�α�p̃�+λ�(s−1)p̃�+ p̃�

⎛
⎜⎝

L∑
k=1
k �=�

γk� (s− 1)

⎞
⎟⎠

+
ρ

2

L∑
k=1
k �=�

(
G̃�k + p̃� − ĩk�(s− 1)

)2

(6)

{
ĩ�k

}
k �=�

(s) := arg min
{ĩ�k}k �=�

D�α� log

⎛
⎜⎝

L∑
k=1
k �=�

eĩ�k + eṼ�

⎞
⎟⎠

−
L∑

k=1
k �=�

γ�k(s− 1)̃i�k +
ρ

2

L∑
k=1
k �=�

((
G̃k� + p̃k

)
(s)− ĩ�k

)2

(7)

γ�k(s) := γ�k(s− 1)+ρ
((

G̃k� + p̃k
)
(s)− ĩ�k(s)

)
, k �= � (8)

λ�(s) :=
[
λ�(s− 1) + δs

(
p̃�(s)− P̃�

)]+
0
. (9)

Steps (6)–(9) are executed in parallel at all links, as long as cer-
tain feedback requirements are satisfied. Step (6) for link � involves
{γk�(s− 1)}k �=� and

{
ĩk�(s− 1)

}
k �=�

, i.e., dual and auxiliary vari-

ables of all its interfering links k �= �, as computed in the previous
iteration (s−1). This information can be communicated via message
passing. Then, (6) is a convex quadratic in p̃�, whose minimum can
be found analytically. The unconstrained minimization in (7) with
respect to ĩ� is carried out at link �, which is assumed to have knowl-

edge of the interference
(
G̃k� + p̃k

)
(s) received from link k �= �

at iteration s. Depending on the operational setup, this can either be
estimated by �, or communicated to �. Then, variables ĩ� are updated
by solving (7) using e.g., damped Newton’s method. Next, step (8)
is straightforward. Notice that ADMoM requires a step size for (8)
equal to the parameter ρ, in order for its convergence properties to
hold, along with other assumptions; cf. [1, 2]. The update in (9)
is carried out according to the dual ascent method. The associated
step-size sequence δs can be chosen as δs = δ1/s, or a sufficiently
small constant δs = δ can be employed - convergence of the iter-
ates to the optimal centralized solution is guaranteed in both cases.
We chose a small constant step size in our simulations, because it
resulted in faster convergence. The resulting distributed algorithm is
summarized as follows

Algorithm 1 Distributed convex approximation of BPPC:
Given D�, α�, β�, ∀� ∈ L, and s := iteration counter,
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• Initialization: For s = 0 set: ρ > 0, δ0 > 0, {λ�(0)}L�=1 >

0, {γ�k(0)}�∈L,k �=� > 0, and
{
ĩ�k(0)

}
�∈L,k �=�

random.

• ∀� ∈ L : transmit initial γ�k(0) and ĩ�k(0) to link k, ∀k �= �.

• Repeat: Set s := s+ 1

1. ∀� ∈ L: update p̃�(s) by solving (6).

2. ∀� ∈ L: update
{
ĩ�k(s)

}
k �=�

by solving (7).

3. ∀� ∈ L: update {γ�k(s)}k �=� according to (8).

4. ∀� ∈ L: update λ�(s) according to (9). Transmit
γ�k(s) and ĩ�k(s) to link k, ∀k �= �.

• Until: convergence (within ε-accuracy); then p̃opt� := p̃�(s),
∀� ∈ L .

Convergence of the algorithm can be determined based on local com-
putation and communication. Each link � keeps track of a local met-
ric, such as the value of its local Lagrange function, and/or the norm
of its residual local equality constraint violation vector r�(s), with

elements r�k(s) := G̃k� + p̃k(s) − ĩ�k(s), ∀k �= �, evaluated at s.
Each link maintains a binary flag taking the value 1 whenever con-
vergence with respect to its local metric has been achieved, within a
given accuracy. Then, a distributed consensus-on-the-min algorithm
[9, 4] can be employed among links, so that iterates terminate once
all links reach convergence.

4. SIMULATION RESULTS
The convergence properties and quality of approximation of the pro-
posed distributed solution relative to the centralized one in [6] are
examined in this section through simulations. Due to space limi-
tations, we only report selected indicative results, summarizing our
experience from a more comprehensive set of simulations.

We consider the same network as in [6]. There is one flow
(source - destination pair) and a total of N = 6 nodes, thrown ran-
domly on a 100×100 square; the lower-left node is taken as source,
and the upper-right one as destination. There are L = 25 possi-
ble links, since the destination is a sink and no node transmits to
itself. We take direct and crosstalk power losses ∼ 1

distance4
. If Rx(�)

= Tx(k), then Gk,� is set to 1/eps, where eps is machine preci-
sion, to model a no-listen-while-you-talk scenario. A spreading gain
G = 128 is assumed to moderate interference; V� = 10−12, and
P� = 5, ∀�. We simulate the network for 100 packet/control slots,
assuming deterministic arrivals at a rate of 9 packets/slot, under con-
trol of the centralized batch high-SINR algorithm in [6], which cor-
responds to setting α�(t) = 1 and β�(t) = 0, ∀� and ∀t. The result-
ing differential backlogs D�(t), ∀�, at each time slot t ∈ {1, 100},
are then used to solve 100 corresponding problem instances via the
distributed algorithm.

Parameter choices for the distributed algorithm are as follows. A
constant step-size δs = δ = 0.01, ∀s was used for the gradient step
in (9). For initialization, the dual parameters {λ�}�∈L and {γ�k}�∈L

k �=�

and the auxiliary variables
{
ĩ�
}

�∈L
were all set equal to 1. For

the termination criterion, each link keeps track of i) the norm of its
residual vector and ii) successive differences of the value of its local
augmented Lagrangian. Both must drop under ε = 10−2 for the
protocol to terminate. The reason is that for higher ρ the residual
vector is forced quickly to zero, however convergence towards an
optimal (vis-a-vis admissible) solution can be slow, because the γ�k
update in (8) is coarse in the earlier stages.

Convergence of ADMoM to a solution of (1) is assured for any
ρ, however the choice of ρ affects both the number of iterations

required to drop below a given tolerance threshold in terms of the
aforementioned convergence metrics, and the value of (1) attained at
termination. To appreciate this, we present indicative results for the
30th time slot in Table 1. Solving the problem for various values of ρ,
we examine its impact on convergence speed and the finally attained
value of (1). Notice that, as ρ is increased from 0.002 to 5, there is
an initial decrease in the required number of iterations, reaching a
‘sweet spot’ at ρ ∼ 0.1, followed by an increase. This notch-type
behavior is typical. Also note that the higher ρ is the (slightly) lower
the final objective value of (1), because the quadratic regularizing
term is more heavily weighted for a given tolerance ε.

Our experience from a rather comprehensive set of simulations
is that the distributed algorithm consistently yields essentially the
same solution as the centralized one - not only in terms of the set of
activated links (whose SINR turns out above machine precision), but
also in terms of numerical values of the corresponding SINRs. As an
illustration, Table 2 summarizes results for the 30th time slot. Fig. 1
depicts the progress of the sum of augmented Lagrangian functions
for all links (left) versus iterations, and the average, over all links,
norm of the residual vector r�(s) (right), for ρ = 0.01 (top), and
ρ = 0.1 (bottom). As can be seen, convergence is achieved even at
a moderate number of iterations.

Fig. 2(left) depicts the progress of the objective function in (1)
versus iterations, together with the value of (1) attained by the cen-
tralized solution, for ρ = 0.01 (top), and ρ = 0.1 (bottom). For
better visualization, the difference of the two curves is plotted in
Fig. 2(right), for ρ = 0.01 (top), and ρ = 0.1 (bottom). Clearly,
performance comes closer to the centralized one for ρ = 0.01, at the
cost of a higher number of iterations till ε-convergence (notice the
different scaling of the x-axes).

Finally, the value of the objective in (1) obtained from the dis-
tributed and the centralized algorithm, for all 100 problem instances,
is plotted in Fig. 3(top), for ρ = 0.01. For better appreciation of the
difference, Fig. 3(bottom) plots the absolute value of the difference
of the two curves in 3(top). Respective results for ρ = 0.1, are
shown in Fig. 4. For the case of ρ = 0.01, the average number of
iterations was 437, while for ρ = 0.1, it was 174.

5. CONCLUSIONS
We have provided the core of an ADMoM-based distributed imple-
mentation of the successive convex approximation approach to back-
pressure power control [6]. Our ADMoM-based solution is not re-
stricted to the high-SINR regime, and is faster and more reliable
than dual decomposition. Simulations suggest that the distributed
algorithm keeps up with its centralized counterpart; tuning of ε and
ρ can be used to trade-off solution accuracy for convergence speed,
realizing favorable trade-offs. The choice of ρ is particularly impor-
tant in this context, as there appears to be a sweet spot that minimizes
the number of iterations without much loss in terms of accuracy.

In the journal version we will elaborate on feedback require-
ments relating not only to primal and dual parameter exchanges dur-
ing iterations, but also to distributed warm start and consensus-on-
termination issues, which are very interesting but cannot be included
in this conference version due to space limitations.
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Fig. 1. Augmented Lagrangian and average norm of residual vector
versus iterations, for ρ = 0.01 (top), and ρ = 0.1 (bottom).
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Fig. 2. Objective function (left) and approximation error (right) ver-
sus iterations, for ρ = 0.01 (top), and ρ = 0.1 (bottom).
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Fig. 3. Comparison between distributed and centralized algorithm:
Objective value attained at 100 problem instances (top), absolute
value of difference (bottom), for ρ = 0.01.
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Fig. 4. Comparison between distributed and centralized algorithm:
Objective value attained at 100 problem instances (top), absolute
value of difference (bottom), for ρ = 0.1.
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