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ABSTRACT

This paper introduces algorithms for the decentralized low-
rank matrix completion problem. Assume a low-rank matrix
W = [W1,W2, ...,WL]. In a network, each agent � ob-
serves some entries of W�. In order to recover the unob-
served entries of W via decentralized computation, we fac-
torize the unknown matrix W as the product of a public ma-
trix X, common to all agents, and a private matrix Y =
[Y1,Y2, ...,YL], where Y� is held by agent �. Each agent
� alternatively updates Y� and its local estimate of X while
communicating with its neighbors toward a consensus on the
estimate. Once this consensus is (nearly) reached throughout
the network, each agent � recovers W� = XY�, and thus W
is recovered. The communication cost is scalable to the num-
ber of agents, and W� and Y� are kept private to agent � to a
certain extent. The algorithm is accelerated by extrapolation
and compares favorably to the centralized code in terms of
recovery quality and robustness to rank over-estimate.

Index Terms— decentralized algorithm, low-rank matrix
completion, matrix factorization, privacy protection

1. INTRODUCTION

Recovering an (approximately) low-rank matrix from an in-
complete set of its entries is of great research interest (e.g.,
[1, 2]). This problem arises in collaborative filtering [3], in-
ternet traffic analysis [4], and sensor localization [5], etc.

Some existing algorithms [6, 7] solve convex problems
based on nuclear-norm minimization, which tends to produce
a low-rank matrix; other algorithms [8, 9] decompose the un-
known matrix as the product of two lower-dimensional ma-
trices and solve nonconvex problems. The convex approach
yields global optimal solutions but needs singular value de-
compositions (SVDs), which are expensive on large-scale ma-
trices. The nonconvex approach is subject to local minima
(guarantees also exist [8] due to good initial solutions), yet its
performance is often satisfactory, and the computational cost
is lower due to avoiding SVDs [9].

The work of Q. Ling is supported in part by the NSFC grant 61004137.
The work of Y. Xu and W. Yin is supported in part by NSF ECCS-1028790,
NSF DMS-07-48839, ONR Grant N00014-08-1-1101, ARL and ARO grant
W911NF-09-1-0383, and DOD/AFOSR FA9550-10-C-0108 Phase II.

Most these existing algorithms are centralized except [5]
for symmetric matrices only. In network applications, how-
ever, decentralized computing is preferred for communica-
tion, network topology, and privacy reasons. In decentralized
matrix completion, a set of geographically distributed but con-
nected agents collect the matrix entries and recover the matrix
via communications within neighborhoods; there is no fusion
center to collect the sampled entries or to recover the matrix.

This paper develops algorithms for decentralized low-rank
matrix completion. It assumes a set of L agents and a matrix

W = [W1,W2, ...,WL] ∈ RN×M (1)

of rank r � min{M, N}. Each agent � observes some entries
of W� ∈ RN×M� ,

∑L
�=1 M� = M . The set of observations

is Ω = ∪L
�=1Ω�. We introduce a public matrix X ∈ RN×r,

which is common to all agents, and a private matrix Y =
[Y1,Y2, ...,YL] ∈ Rr×M , where each Y� corresponds to
W� and is held by agent �. We reconstruct W = XY, which
is at most rank r, by recovering X and Y in a decentralized
fashion. The communication cost is scalable to L, and W�

and Y� are not shared between agents for privacy protection.

2. FORMULATION AND A CENTRALIZED
ALGORITHM

Recent work [9] recovers W = XY by solving

min
X,Y,Z

1
2 ||XY − Z||2F ,

s.t. Zn,m = Wn,m, ∀(n,m) ∈ Ω,
(2)

where Z ∈ RN×M is an auxiliary matrix and || · ||F denotes
the matrix Frobenius norm.

There is an obvious difference between finding the lowest-
rank matrix W, often done by minimizing ||W||∗ instead of
rank(W), and finding a factorization with rank up to r like
(2). The latter needs a rank r a priori, or dynamically update a
rank estimate. This is a disadvantage but in applications such
as internet traffic analysis [4] and sensor localization [5], r is
known theoretically or empirically. The disadvantage is also
reduced as our decentralized algorithm is robust to imperfect
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estimation of r to some extent, as we shall demonstrate in nu-
merical experiments. For decentralized computation, we pre-
fer the factorization approach over the nuclear-norm approach
since the latter needs decentralized SVD, which is expensive.

Prior to introducing the decentralized algorithm, we re-
view algorithm [9] based on nonlinear Gauss-Seidel (GS) it-
erations applied to (2). At iteration t, the algorithm generates:

X(t + 1) =Z(t)YT (t)(Y(t)YT (t))†, (3a)

Y(t + 1) =(XT (t + 1)X(t + 1))†XT (t + 1)Z(t), (3b)

Z(t + 1) =X(t + 1)Y(t + 1)
+ PΩ(W − X(t + 1)Y(t + 1)), (3c)

where † stands for Moore-Penrose pseudo-inverse, and step
(3c) effectively equals Zn,m(t + 1) = Wn,m for (n,m) ∈ Ω
and Zn,m(t + 1) = (X(t + 1)Y(t + 1))n,m for (n,m) �∈ Ω.

Since only the product XY, rather than individual X and
Y, is needed, one can simplify the algorithm.
Lemma 1. Replacing the updating rule (3a) by

X(t + 1) = cZ(t)YT (t), c > 0, (4)

does not change the sequences {X(t)Y(t)} and {Z(t)}.
Convergence of the algorithm is established in [9].

Theorem 1. Let {(X(t), Y (t), Z(t))} be a sequence gener-
ated by the updating rule (3) (or steps (4), (3b), and (3c)), and
{PΩc(X(t)Y (t))} be bounded. Then any accumulation point
of {(X(t), Y (t), Z(t))} is a stationary point of (2).

3. A DECENTRALIZED GS ALGORITHM

3.1. Consensus Optimization Problem

We shall implement the updates (4), (3b), and (3c) in a decen-
tralized way. Our motivations are :
1) Decompose Z = [Z1,Z2, . . . ,ZL] so that each Z� has
columns corresponding to W� and Y�. Each agent � holds
Z� and Y�, as well as those entries of W� in Ω. Y is the
private matrix.
2) Each agent keeps a local copy X(�) of the public matrix X.
Presumably, all local copies shall be identical to X throughout
the network, but we relax this and let X(�) be a local estimate.

Keeping these ideas in mind, we check how the central-
ized algorithm can be transformed to a decentralized one:
1) The updates (3b) and (3c) are naturally decomposable to
local updates at the agents. Provided that agent �’s local copy
X(�) equals X, it only needs to update its private Z� and Y�

according to (3b) and (3c), independent of other agents.
2) The update (4) mixes the data of all the agents. Set c = 1

L ;

(4) becomes X(t + 1) = 1
L

∑L
�=1 Z�(t)YT

� (t), i.e., X(t + 1)
is an average of Z�(t)YT

� (t), � = 1, . . . , L, where agent �
provides Z�(t)YT

� (t).
If we compute identical local copies X(�), then we need

X(�)(t + 1) =
1
L

L∑
�=1

Z�(t)YT
� (t), ∀� = 1, . . . , L, (5)

which is the so-called average consensus problem. At itera-
tion t, we formulate the following problem:

min
{X(�)(t+1)}

1
2

L∑
�=1

||X(�)(t + 1) − Z�(t)YT
� (t)||2F ,

s.t. X(�)(t + 1) = X(j)(t + 1), ∀j ∈ N�, ∀�,
(6)

where N� denotes the set of neighbors of agent �. Apparently,
in a connected network, the solution of (6) satisfies (5) and
thus (4) for X(t + 1) ≡ X(�)(t + 1), ∀�, and c = 1/L. There
are various decentralized algorithms for this problem, e.g., the
randomized gossip algorithm [10] and the alternating direc-
tion method (ADM) based algorithm [11]. Their connection
is analyzed in [12]. This paper adopts the ADM approach.

3.2. Exact and Inexact Consensus Optimization

Since it is expensive to solve an instance of (6) at every itera-
tion, we solve it inexactly by truncating the ADM iterations.

For each t, to run a total of S sub-iterations for (6), we
divide [t, t + 1] to S slots. At sub-iteration s, the steps are:
1) Each agent � updates

X(�)(t + s+1
S ) = Z�(t)Y

T
� (t)−α(�)(t+ s

S )

1+2β|N�|

+
β|N�|X(�)(t+ s

S )+β
∑

j∈N�
X(j)(t+ s

S )

1+2β|N�| ,
(7)

where α(�) ∈ RN×M is the Lagrange multiplier matrix with
the initial value α(�)(0) = 0, |N�| is the cardinality of N�,
and β > 0 is a constant.
2) Each agent � obtains X(j)(t+ s+1

S ), ∀j ∈ N�, and updates

α(�)(t + s+1
S ) = α(�)(t + s

S )
+β

(
|N�|X(�)(t + s+1

S ) − ∑
j∈N�

X(j)(t + s+1
S )

)
.

(8)

X(j)(t + s+1
S ), ∀j ∈ N�, obtained in the second step is used

in the first step of next sub-iteration.
Convergence for S → ∞ can be found in [11, 12]. How-

ever, we found unnecessary to use a large S. A small S leads
to inexact {X(�)}, yet this inexactness does not significantly
slow down the overall progress on {X(�)}, Y, and Z. During
the early iterations, exact {X(�)} in terms of (5) is better but
not much better than an inexact one. Through experiments,
we found that running (7) and (8) just once for each t (i.e.,
setting S = 1) gives the lowest total cost.

3.3. Decentralized Matrix Completion

Summarizing the discussions and applying one sub-iteration
for (6) at each t, we readily give the proposed decentralized
matrix completion algorithm:
Step 1: Initialization. Agent � initializes X(�)(0) and Y�(0)
as random matrices, α(�)(0) = 0, Z�(0) = PΩ�

(W�).
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Step 2: Update of X: Each agent � updates

X(�)(t + 1) = Z�(t)Y
T
� (t)−α(�)(t)

1+2β|N�|

+
β|N�|X(�)(t)+β

∑
j∈N�

X(j)(t)

1+2β|N�| .
(9)

Step 3: Update of α. Each agent � updates

α(�)(t + 1) = α(�)(t)
+β

(
|N�|X(�)(t + 1) − ∑

j∈N�
X(j)(t + 1)

)
.

(10)

Step 4: Update of Y. Each agent � updates

Y�(t + 1)
= ((X(�)(t + 1))T X(�)(t + 1))−1(X(�)(t + 1))T Z�(t).

(11)
Step 5: Update of Z. Each agent � updates

Z�(t + 1) = X(�)(t + 1)Y�(t + 1)
+PΩ�

(W� − X(�)(t + 1)Y�(t + 1)).
(12)

Step 6: Iteration. Go to Step 2 until a stopping rule is met.
Remark 1. As in the centralized algorithm in [9], one can
apply successive over-relaxation (SOR) extrapolation to ac-
celerate the decentralized algorithm. For each agent �, intro-
duce an extrapolation weight ω� with initial value 1, compute
Q�(t) = ω�(t)Z�(t) + (1 − ω�(t))X(�)(t)Y�(t) before X(�)

is updated at iteration t, and replace Z� in (9) and (11) by
Q�. To update parameter ω�, we initially choose δ > 0 and
γmin ∈ (0, 1) and, at iteration t, let

γ�(t) =
‖PΩ�

(X(�)(t)Y�(t)) − PΩ�
(W�)‖F

‖PΩ�
(X(�)(t − 1)Y�(t − 1)) − PΩ�

(W�)‖F
.

A small γ�(t) indicates the current ω� works well. Hence, we
keep the same ω� if γ�(t) < γmin; if γ�(t) ∈ [γmin, 1), ω� is
slightly increased to ω� + δ; otherwise, we reset ω� = 1 if
γ�(t) ≥ 1. In our tests, we fix δ = 0.1 and γmin = 0.7.

3.4. Privacy Protection and Communication Cost

In some applications of decentralized multi-agent systems,
agents may want to avoid sharing original data with others.
For our problem, it is possible for each agent � to keep W�,
Z�, and Y� private to certain extent.

Since there is no information exchange at (11) and (12)
between different agents, we shall focus on the information
exchange in (9) and (10), where each agent � broadcasts X(�)

to its neighbors. In light of (9), it is nontrivial for the neigh-
bors to decrypt {Z�(t)} and {YT

� (t)} from {X(�)(t)}; this
would require to know the X(j)-sum in (9), as well as track-
ing {α(�)(t)}. The extrapolation in Remark 1 will make the
decryption more difficult since the extrapolation weight ω�

is all-time private to agent � and subject to frequent changes.
Though we cannot assert full privacy, decryption is certainly a

nontrivial task especially when the network topology is com-
plicated.

Communication cost is one of the critical design consider-
ations for networked multi-agent systems. In wired systems,
communications occupy network bandwidth; in wireless sys-
tems, especially battery-supplied wireless sensor networks,
communications consume both bandwidth and energy. For
our problem, the only communication at each iteration is that
each agent � broadcasts X(�) of size N × r to its neighbors.
Assuming that the iterative algorithm terminates after T itera-
tions, the average communication cost per agent is T ×N×r.
A smaller r would lead to less communication. Furthermore,
the communication cost is evenly distributed, and no agent
communicates much more than others; hence, the network is
robust to congestion and incidental failures of some agents.

4. NUMERICAL EXPERIMENTS

We assume that L agents are uniformly randomly deployed in
a 100 × 100 two-dimensional area. Any two agents within a
distance of 30 are directly connected with bi-directional wire-
less channels; the resulting communication network is con-
nected. A noise-free data matrix W of rank K is generated
by W = UDiag(d)VT , where the entries of U ∈ RN×K ,
d ∈ RK , and V ∈ RM×K are i.i.d. sampled from the stan-
dard normal distribution. We let rank K vary in the experi-
ments. Each of the L agents holds M/L columns of W. The
sample set Ω contains randomly chosen 100×p percentage of
the entries of W, so the rest entries need recovery. Regarding
unknown matrices X ∈ RN×r and Y ∈ Rr×M , size r may
or may not equal K. In the ADM step, β = 1 is fixed.

The performance is measured in the Frobenius-norm rel-
ative error: ||W − XY||F /||W||F . For decentralized algo-
rithms, we get XY by collecting each product X(�)Y�, i.e.,
XY = [X(1)Y1, . . . ,X(L)YL]. In the first set of tests (Fig.
1 and Fig. 2), we set L = 50, N = 40 and M = 500. In
the second set of tests (Fig. 3 and Fig. 4), we set L = 25,
N = 300 and M = 500.

Test with exact rank estimate r = K. Consider rank K
is known or accurately estimated. For p = 0.8 and K = 4,
the performance of centralized GS (Cen-GS) and decentral-
ized GS (Dec-GS) algorithms is depicted in Fig. 1. Both al-
gorithms converge to the exact recovery at a linear rate. While
the centralized one reaches the machine precision within 100
iterations, the decentralized one needs roughly 10 times the
iterations for reaching a similar accuracy. This reflects the
trade-off in cost between centralized and decentralized com-
puting. The former is faster yet comes with the hidden costs
on data collection, for which the knowledge of network topol-
ogy is also required; the latter is slower, yet skips data collec-
tion and protects data privacy.

Test with rank over-estimate r > K. Over-estimating
the rank will reduce the performance of both the centralized
GS and decentralized GS algorithms. For the same p but
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Fig. 1. Cen-GS and Dec-GS with p = 0.8 and r = 4.
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Fig. 2. Cen-GS and Dec-GS with p = 0.8 and r = 6.

larger r = 6, the relative error of both algorithms increase; see
Fig. 2. Surprisingly, while the centralized algorithm becomes
stagnated, the decentralized algorithm continues to improve
and gives more accurate recovery.

SOR acceleration and test of varying r. We compare
Cen-SOR (the centralized algorithm with extrapolation) to
our decentralized algorithms Dec-GS (without extrapolation)
and Dec-SOR (with extrapolation). For fixed K = 10, we
vary r = 10, 15, 20. The performance up to 300 iterations are
given in Fig. 3. Dec-SOR is always better that Dec-GS. Cen-
SOR is much better with the exact rank and, otherwise, much
worse. However, we can introduce a dynamic r-update mech-
anism to Cen-SOR; the resulting algorithm, known as LMafit
in [9], significantly improves the performance. It is our future
research to incorporate this in the decentralized algorithm.

Test of varying sample ratios. The larger the rank or
the fewer the samples, the more difficult the recovery. For
original matrix ranks K = 10, 20, 30 each, we test a series of
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Fig. 3. Dec-GS, Dec-SOR and Cen-SOR results from 50%
samples and with r = 10, 15, 20 (true rank K = 10).
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Fig. 4. Recovery success rates of Cen-SOR and Dec-SOR vs
sample ratios p at different true ranks r = K = 10, 20, 30.

sample ratios p = 0.05, 0.08, . . . , 0.8 and check the chance of
acceptable recovery (relative error ‖W − XY‖F /‖W‖F <
10−3) over 20 independent runs. Exact ranks are given to
all algorithms. Fig. 4 shows that Dec-SOR is just slightly
worse than Cen-SOR. Dec-GS, which is not shown in Fig. 4,
performs similar to Dec-SOR.
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