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ABSTRACT

We consider a gossip type of subgradient optimization that

can be applied to noisy networks, where the communication

links between nodes are noisy. Each node in the network has

a function that is not known to all the other nodes and the

goal is to cooperatively minimize the sum of all the functions

in the network. Under noisy environment, we show that with

our distributed optimization algorithm, the disagreements be-

tween the value of the nodes converge towards zero. Fur-

thermore, for convex node function, we show that all values

converge to the global optimal solution of the optimization

problem.

Index Terms— gossip, distributed optimization, subgra-

dient, Lasso

1. INTRODUCTION

As the size and complexity of network increases, the notion of

a central fusion center to manage the entire network becomes

less feasible. As a result, research in distributed network al-

gorithms have attracted the attention of many researchers in

recent years. One group of these algorithms is known as gos-

sip algorithms [1, 2], where nodes in a network communicate

with one another to achieve a common goal by exchanging

small amount of information.

Gossip algorithms have been used for many purposes,

such as calculating the average of node values, and even for

something as simple as disseminating information through-

out an entire network. The application of gossip that we are

interested is distributed subgradient optimization [3–9]. In

this setting, each node in the system knows a function which

all the other nodes do not know, and the nodes work coopera-

tively to minimize the sum of these functions. While previous

deal with stochastic error that occurs from the distributed

subgradient optimization, they do not deal with the presence

of communication noise. When one node communicates with

another node, the value that it receives from that node can be

affected by noise. Such error noise can be problematic since

it affects the accuracy of the iterations.

In this paper, we will investigate the distributed subgra-

dient optimization of a sum of functions in the presence

of communication noise. The communication noise occurs

when nodes extract values from their neighbors. We study

the convergence of the gossip based subgradient optimization

method in noisy networks. Our main contributions are as

follows:

(a) Our results state that in the presence of communication

noise, the subgradient algorithm still causes the iterates

of the nodes to reach a consensus. Therefore, the dis-

agreements between the iterates converge towards zero.

Specifically, for convex node functions, the node values

converge towards the global solution with our distributed

algorithm.

(b) We apply our algorithm to solve a distributed least-

absolute shrinkage and selection operator (Lasso) prob-

lem under noisy conditions.

The rest of the paper is organized as follows. In Section

2, we present the system model and list down some prelim-

inaries necessary for the rest of the paper. In Section 3, we

state the convergence results for our distributed optimization

algorithm in noisy networks. In Section 4, we present a nu-

merical example in the setting of a distributed Lasso problem.

Finally, we summarize and provide some concluding remarks

in Section 5.

2. SYSTEM MODEL AND NOTATION

In a network of n nodes, let the nodes be labelled 1, 2, · · · , n
in some arbitrary order. Each of these nodes can communi-

cate with its neighbours. We assume communication to be

bidirectional, i.e. node i can communicate with node j if and

only if node j can communicate with node i. Suppose each

node has knowledge of a function fi : R → R, and the func-

tions at the other nodes are never made known to itself. It can

calculate the subgradient ∇fi of the function fi. Each node

also has knowledge of an initial real number. These real num-

bers can be expressed in an n-dimensional vector x, with xi

be the initial value at node i. Each node will pick a neighbour
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to communicate with at Poisson rate 1 uniformly amongst its

neighbours. In such a setting, the only information that gets

transferred or shared is the real value each node has. The ob-

jective is to solve for the minimum value for the sum of all the

functions of the network’s nodes. Mathematically, this can be

described as an optimization problem wrtiten as follows:

minimize f(x) :=

m∑

i=1

fi(x)

subject to x ∈ R. (1)

To define time, let t(1) denote the first time any node de-

cides to communicate with a neighbor, and correspondingly,

let t(k) be the k-th time that any nodes decides to commu-

nicate. Thus at t(k), k communications have taken place.

Let s(k) denote the node that starts the communication, and

let r(k) be the node that node s(k) decides to communicate

with. Let x(k) denote the iterates of the nodes at time t(k),
with x(0) = x, and let xi(k) denote the value of node i af-

ter communication at time t(k). At time t(k), node s(k) will

communicate with node r(k) and node s(k) will retrieve the

value of node r(k), and compute the average of these two

values. Node r(k) will do the same as well. We define

x̄s(k),r(k) =
xs(k)(k − 1) + xr(k)(k − 1)

2
.

Since the retrieval of values is subjected to communication

error, we define a perturbation matrix B(k) and a perturba-

tion vector m(k) to describe the communication noise. Let

(B(k)m(k))i denote the i entry of B(k)m(k). Because of

the communication noise, the final computed average at node

s(k) becomes

χi(k) = x̄s(k),r(k) + (B(k)m(k))i (2)

where (B(k)m(k))i is the difference between the computed

average at node s(k) and the actual average x̄s(k),r(k).

If i /∈ {s(k), r(k)}, then xi(k) = xi(k − 1). If i ∈
{s(k), r(k)}, then node i is updated and we have

xi(k) = ζi(k)− 1

Γi(k)
(∇fi(ζi(k)) + εi(k)) (3)

where Γi(k) is the number of updates of node i up to time t(k)
and εi(k) is the stochastic error associated with ∇fi(ζi(k)).

Now, let ei denotes the vector with value 1 for its i-th
entry and 0 for the rest of its entries and I be the identity

matrix. We define

W(k) = I − 1

2
(es(k) − er(k))(es(k) − er(k))

T (4)

and we can now express the update in (3) as follows:

x(k) = W(k)x(k − 1) + p(k) +B(k)m(k) (5)

where

p(k) = −
∑

i∈s(k),r(k)

1

Γi(k)
(∇fi(χi(k)) + εi(k))ei.

Let y(k) be the average of the elements of x(k) and λi{·} be

the ith largest eigenvalue of its argument. Using these nota-

tions, we can go on to describe some assumptions about our

model.

2.1. Assumptions

These are the assumptions that we make about our model.

Assumption 1 The gradients of the functions fi are uni-
formly bounded, that is,

sup
x∈R,1≤i≤m

|∇fi(x)| ≤ C,

for some constant C > 0.

Let F (k − 1) be the σ-algebra that is generated by the

entire algorithm history up until time t(k). For convenience,

we denote F (k − 1) by F .

Assumption 2 With probability 1, we have:

(a) E[|εi(k)|2 | F ] ≤ ν2 for all k and i ∈ V , and for some
ν ≥ 0.

(b) E[εs(k)(k) | F ] = 0 and E[εr(k)(k) | F ] = 0.

Regarding communication error, the following assump-

tions define the restrictions on perturbation vector m(k) and

random matrix B(k).

Assumption 3 With probability 1, we have:

(a) E[m(k) | F, s(k), r(k),B(k)] = E[m(k)] for all k.

(b) E[m(k)] = 0 and E[‖m(k)‖2 | F ] = σ2
k for all k and

for some σk ≥ 0.

(c) E[B(k) | F, s(k), r(k),m(k)] = E[B(k)] for all k.

3. CONVERGENCE RESULTS

We must first examine the conditions of the communication

noise that will allow the node values to converge towards

a common value. This convergence of values depends on

the characteristics of the perturbation element B(k)m(k). It

turns out that a sufficient condition for convergence is when∑∞
k=1 λ1{E[B(k)TB(k)]}E[‖m(k)‖2] < ∞ and this does

not require any assumption on the convexity of functions fi.
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Theorem 1 Suppose that
∞∑

k=1

λ1{E[B(k)TB(k)]}E[‖m(k)‖2] < ∞. (6)

Then with probability 1, we have
∑∞

k=1
‖x(k)−y(k)1‖

k < ∞
and limk→∞ ‖x(k)− y(k)1‖ = 0. In the case where σk = σ
for some σ > 0, our condition reduces to

∞∑

k=1

λ1{E[B(k)TB(k)]} < ∞.

With the above theorem, we can now state the conver-

gence results for the case where the individual fi’s are con-

vex. These functions do not need to be differentiable; where

a gradient does not exist, a subgradient is used instead. The

subgradient ∇g(x) of a function g at x is a vector that satisfies

∇g(x)T (y − x) ≤ g(y)− g(x), (7)

for all y in the domain of g. The following theorem shows

that the iterates of the algorithm converge to the solution of

(1).

Theorem 2 Let X∗ = Argminx∈Rf(x) be non-empty, and
fi(x) be convex for each i ∈ V . If

∞∑

k=1

λ1{E[B(k)TB(k)]}E[‖m(k)‖2] < ∞, (8)

Then, with probability 1, the sequences {xi, k}, i ∈ V , con-
verge to the same point in X∗.

4. NUMERICAL EXAMPLE

With the result of convergence to a minimum for convex func-

tions, we can now apply the gossip subgradient optimization

algorithm to a practical example. In this section, we take a

look at the problem of vector estimation. The problem of

vector estimation can be given by

y = Ax, (9)

where x ∈ R
N is the vector that we want to estimate or detect,

A ∈ R
M×N is the detection or sensing matrix and y ∈ R

M

is the data vector. If M > rank(A), then x can be deduced

from both y and A by basic linear algebra, so detection is

necessary only when M < rank(A).
One method of estimating the vector x is the least-

absolute shrinkage and selection operator [10], also known

as the Lasso. This technique was first used for estimation

and continuous variable selection purposes in linear regres-

sion problems. The Lasso is a convex optimization problem

described as follows:

arg min
x

1

2
‖y −Ax‖22 + μ‖x‖1. (10)

Here, the �1 norm is the sum of the absolute values of the en-

tries of x, and parameter μ ≥ 0 is a constant that controls the

amount of shrinkage over the solution of (10) that is effected

by the �1 norm sparsity-encouraging penalty. Solving the op-

timization problem (10) gives us an estimate for x based on

the knowledge of y and A.

Suppose now that there are J nodes, indexed 1 to j, and

each node has a detection matrix Aj ∈ R
Mj×N that it uses

to estimate x, yielding data vector yj ∈ R
Mj . Individually,

these nodes can reproduce their own estimate of x. How-

ever, they can also cooperate to detect x so that the resultant

estimate is more accurate. One such method of cooperation

is known as the distributed Lasso [11], or the D-Lasso. Let

y = (y1, . . . ,yJ) and A = (AT
1 , . . . ,A

T
J )

T . If there ex-

ists a central fusion center that can collect data from all the

nodes, we can basically collect all the data vectors yj and

detection matrices Aj and then solve for (10), since this al-

lows us to utilize all the information available in each of the

nodes. Without a fusion center, gathering information from

every node can be difficult, especially when the network is

large. In this case, we can approach the problem in a consen-

sus manner. Let fj(x) =
1
2‖yj−Ajx‖22+μ‖x‖1. Thus, (10)

can be rewritten as

minimize f(x) :=

J∑

j=1

fj(x)

subject to x ∈ R
N . (11)

This is the exact form that is found in (1), with each of the

functions fj being convex. The main difference is that x here

is N -dimensional instead of 1-dimensional. However, be-

cause the algorithm can be applied elementwise, our results

still hold for N -dimensional x. Thus, our distributed stochas-

tic optimization algorithm can applied to the Lasso problem

in noisy networks.

In the following, we use a model of four nodes with an

underlying complete graph topology. The four nodes work

together to detect the value of a vector x. We set x to be a

sparse vector with dimension 20 and sparsity 2, that is, it has

two random nonzero entries. We let the perturbation vector

m(k) to be a Gaussian random vector and the matrix B(k) be

the diagonal matrix with entries
(
1
2

)k
. In this way, the pertur-

bation vector and matrix satisfies the conditions of our theo-

rems, which is
∑∞

k=1 λ1{E[B(k)TB(k)]}E[‖m(k)‖2] < ∞.

We set the initial iterates to be zero. We run one simulation

with the nodes experiencing communication noise whilst de-

tecting x, and a second one without communication noise. At

each time step, a node is chosen at random, and this node

chooses one of the other three nodes with uniform probability

to communicate with. To ensure greater comparison reliabil-

ity, the two nodes that are communicated with each other at

each time step for both simulations are ensured to be the same.

Thus, s(k) and r(k) are the same for both sets of simulation.

We then plot the mean squared error of each iteration.
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Fig. 1. Plot of the mean squared error with and without com-

munication noise.

From Fig. 1, we see that the mean squared error de-

cays as the iteration increases for both cases with and without

noise. However, the presence of communication noise leads

to a much higher mean squared error. Moreover, the conver-

gence towards to the actual date vector is faster for the case

without noise. However, this rate of convergence depends on

how the perturbation matrix and vector are chosen. Note that

both cases eventually converge towards x as the number of

iterations increases, as proven by our theorems. Therefore,

even if the individual nodes are not able to perform the opti-

mization, a knowledge of the individual subgradient function

is sufficient for the nodes to cooperate and iteratively arrive at

a reasonable solution depending on requirement of the prob-

lem.

5. CONCLUSION

In this paper, we have presented results that show that the

subgradient optimization algorithm does cause node values

to converge under certain types of noisy communication en-

vironments. We also showed that for convex functions, the

algorithm converges towards the solution of the optimization

problem. We showed numerically that the algorithm indeed

converges for the Lasso problem. Future work can be geared

towards investigating the convergence properties for other

kinds of noisy conditions and also other types of functions

applicable in real-life scenarios.
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