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ABSTRACT
This paper addresses utility maximization problems in the
half-duplex two-way multiple-input multiple-output (MIMO)
relay channel, where the relay uses the decode-and-forward
strategy. Perfect channel information at all nodes and a time
division duplex communication protocol with per node peak
power constraints for every protocol phase are assumed. For
this scenario, we show how solutions to the considered class
of problems can efficiently be determined by means of a dual
decomposition approach.

Index Terms— Two-way relay channel, MIMO, half-
duplex, decode-and-forward, utility maximization.

I. INTRODUCTION

The two-way relay channel models the scenario where
two terminals want to exchange information with the aid of
a relay. It was introduced in [1], where the authors showed
that a significant portion of the loss in spectral efficiency
suffered in the one-way relay channel due to the half-duplex
constraint can be compensated when bidirectional communi-
cation is considered. As a result, many other scientific papers
have since addressed the half-duplex two-way relay chan-
nel in combination with various communication protocols
and relay strategies that include decode-and-forward (DF),
compress-and-forward (CF), and amplify-and-forward (AF).
For a short and very incomplete list of references, see for
example [2]–[5] and references therein.

A general outer bound C on achievable rate regions for the
half-duplex two-way MIMO relay channel was established
in [6], assuming time division duplex (TDD) communication
protocols with per node peak power constraints for every
protocol phase. In addition, an achievable rate region RDF

based on the relay using DF was presented, which is a
superset of all previously known rate regions that can be
achieved with the decode-and-forward scheme. The main
contribution of [6], then, was to derive parameterizations of
C and RDF that allow to efficiently evaluate these regions by
means of a dual decomposition approach.

In this work, we consider utility maximization problems
on the above-mentioned achievable rate region RDF, where
the utility is a nondecreasing and concave function of the rate
vector. It is demonstrated how the parameterization of RDF

and the dual decomposition approach proposed in [6] can
also be used to efficiently determine solutions to this class of
problems. Moreover, we take a closer look at the problems
for specific utilities that are associated with various well-
known fairness criteria: max-min fairness [7], proportional
fairness [8], and α-fairness [9], which is a generalization of
the first two fairness measures.

The remainder of this paper is organized as follows. Sec. II
introduces the system model for the half-duplex two-way
MIMO relay channel. In Sec. III, we address the utility
maximization problems to be solved and show that optimal
solutions can be obtained in an efficient manner using a dual
decomposition approach. Numerical results are presented in
Sec. IV before we conclude in Sec. V.

II. SYSTEM MODEL

We consider the restricted half-duplex two-way relay
channel in this paper, i.e., the bidirectional communication
is restricted in the sense that the encoders of the two
terminal nodes can neither cooperate, nor are they able to use
previously decoded information to encode their messages.
The most general communication protocol for this channel
is composed of all six phases (network states) where either
one or two nodes transmit [10]. Obviously, no information
is conveyed when no or all nodes transmit at the same time
(the latter due to the half-duplex constraint). The six phases
are characterized as follows:
1) Node 1 transmits to node 2 and the relay:
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5) The relay and node 2 transmit to node 1:

y
(5)
1 = HR1x

(5)
R + H21x

(5)
2 + n

(5)
1 , n

(5)
1 ∼ NC(0, IN1).

6) The relay and node 1 transmit to node 2:
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Here, HAB denotes the channel gain matrix from node A
to node B, where we have assumed that all channels remain
constant for all six network states in order to simplify the
notation. However, this is without loss of generality since
we require all channels to be perfectly known at all nodes
as well as perfect synchronization between all nodes for the
discussions below. The circularly symmetric additive white
Gaussian noise n

(i)
A received at node A during phase i is

assumed to be independent of the noise n
(j)
B received at

another node B for all phases j = 1, . . . , 6 and independent
of n

(j)
A for all j �= i. A transmit covariance matrix
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is associated with each node A that transmits in the i-th
phase. This node A is then subject to a peak power constraint
of the form tr
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B transmit simultaneously during phase i, we have a joint
transmit covariance matrix
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III. UTILITY MAXIMIZATION

The general utility maximization problems we consider in
this paper read as

max
z

u(z) s. t. z ∈ RDF ⊂ R
2
+, (3)

where u(z) is nondecreasing and concave in z. RDF denotes
the rate region that is achievable in the half-duplex two-
way relay channel with a communication protocol being
composed of all the six phases specified in Sec. II (perfor-
med in exactly that order) and the relay using the decode-
and-forward strategy [10]. Assuming both perfect channel
state information (CSI) and perfect synchronization, all rate
vectors z ∈ RDF can be achieved with a jointly Gaussian
input distribution that factors as
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[6]. Since the Gaussian distribution
is completely determined by its mean and covariance, the
optimal zero mean input for phase i is specified by R(i).
Moreover, a convenient parameterization of RDF is given by

RDF =
{
z ∈ R

2
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}
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Here, Ri ⊂ R
2
+ is a compact convex set that is parameterized

by means of the (joint) transmit covariance matrix R(i) and

associated with the i-th phase of the transmission protocol,
whose duration is denoted by τi. For example, the set R1

corresponding to the first phase of the protocol is given by
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Each row of A = [ 1 1 0 0 1
0 0 1 1 1 ]

T selects one of the constraints
on z as defined in RDF, and the corresponding rows of
the matrices Bi ∈ {0, 1}5×2 specify the structures of these
constraints with regard to the sets Ri. For all details on
the parameterization of RDF and its properties, we refer the
reader to [6].

In the following, we will make use of the aforementioned
parameterization of RDF in order to solve problem (3) for
different utility functions. First, max-min fair rate allocation
is addressed (the problem can be tackled more directly than
the general one), and subsequently, we consider general uti-
lities with a closer look at proportional and α-fairness. We
do not elaborate on weighted sum rate maximization over
RDF here because this is already covered in [6].

III-A. Max-Min Fairness

One of the most common fairness criteria is max-min
fairness [7]. The rate vector z ∈ RDF ⊂ R

2
+ is max-min

fair if it maximizes the utility u(z) = max min{z1, z2} over
the rate region RDF. For our system model, the max-min fair
rate vector is obtained as the solution of the following utility
maximization problem:

max
z,τi,ri

min{z1, z2} s. t. 0 ≤ Az ≤
6∑
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6∑
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τi = 1,

τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6. (6)

Noting that Az = [ z1 z1 z2 z2 z1+z2 ]
T, we define the vector

c = [ 1 1 1 1 2 ]T and reformulate (6) as

max
y,τi,ri

y s. t. 0 ≤ yc ≤
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τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6. (7)

This is a convex optimization problem for which strong dua-
lity holds so that we can equivalently solve the dual problem.
To this end, we use the (vector-valued) Lagrangian multiplier
λ to incorporate the constraints yc ≤

∑6
i=1 τiBiri into the

objective function. This leads to the Lagrangian function

L(y, ri, τi, λ) = y − λT
(
yc −

6∑
i=1

τiBiri

)
(8)

and the corresponding dual function

Θ(λ) =

⎧⎨
⎩ max

i=1,...,6

(
max
ri∈Ri

λTBiri

)
if cTλ ≥ 1,

+∞ otherwise.
(9)
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In order to determine the max-min fair rate vector, we thus
need to solve the dual problem

min
λ

max
i=1,...,6

(
max
ri∈Ri

λTBiri

)
s. t. λ ≥ 0, cTλ ≥ 1. (10)

This can be done using the cutting plane method [11]
as described in [6]. In each iteration of the cutting plane
algorithm, the dual function Θ(λ) must be evaluated, which
requires to solve six weighted sum rate (WSR) maximization
problems, one over each of the convex sets Ri. For this
purpose, standard SDP solvers like SDPT3 that are capable
of dealing with log-det terms in the objective function may
be applied [6]. The max-min fair rate vector and the optimal
time shares τi are finally obtained by primal reconstruction.

III-B. General Utility Functions

In this section, we consider general nondecreasing and
concave utility functions. Using the parameterization of RDF,
the following utility maximization problem results:

max
z,τi,ri

u(z) s. t. 0 ≤ Az ≤
6∑

i=1

τiBiri,

6∑
i=1

τi = 1,

τi ≥ 0, ri ∈ Ri, ∀i = 1, . . . , 6. (11)

Since u(z) is assumed to be concave, strong duality holds
again. Like in the previous subsection, we incorporate the
constraints Az ≤

∑6
i=1 τiBiri into the objective function,

which eventually yields the dual function

Θ(λ) = sup
z≥0

{
u(z) − λ

T
Az

}
+ max

i=1,...,6

(
max
ri∈Ri

λ
T
Biri

)
.

(12)

The dual function decomposes as Θ1(λ) + Θ2(λ), where
Θ2(λ) is equal to the maximum weighted sum rate over all
sets Ri as known from the max-min problem, and Θ1(λ) =
supz≥0

{u(z) − λTAz} is obtained from a convex optimi-
zation problem that only depends on z. As the utility is
assumed to be nondecreasing, the supremum may be infinity
for general λ. Without changing the original problem, this
can be prevented by adding the constraint z ≤ d if it is gua-
ranteed that d ≥ z, ∀z ∈ RDF. We may for example choose
any d that is larger than the vector of optimal unidirectional
rates. The dual problem is then given by

min
λ

{
max

0≤z≤d

{
u(z) − λTAz

}
+ max

i=1,...,6

(
max
ri∈Ri

λTBiri

)}
s. t. λ ≥ 0. (13)

We can of course apply the standard cutting plane method
to this problem again. However, instead of approximating the
whole dual function Θ(λ), it is also possible to introduce
a cut each for Θ1(λ) and Θ2(λ) in every iteration [12].
While this increases the complexity of the master program,
fewer iterations are usually needed to approximate Θ(λ)
accurately. As the complexity is dominated by the evaluation
of the dual function, this is a worthwhile tradeoff here.

Let us now have a closer look at Θ1(λ) for the utili-
ty associated with α-fairness [9], which is a generalization
of max-min and proportional fairness [8]. In particular, a
proportional fair rate allocation is obtained by considering
α-fairness with α = 1, and as α becomes large, α-fairness
converges to that of max-min. The utility function associated
with α-fairness is given by

uα(z) =

{∑2
k=1 log(zk) if α = 1,∑2
k=1(1 − α)−1z1−α

k if α > 0, α �= 1.
(14)

Note that uα(z) is differentiable and concave for all α > 0.
The necessary and sufficient condition for z∗ to maximize
uα(z) − λ

T
Az over the set 0 ≤ z ≤ d is [11](

∇uT
α(z∗) − λTA

)
(z − z∗) ≤ 0, ∀0 ≤ z ≤ d. (15)

Since uα(z) is additive and increasing in every component,
it hence follows for λ ≥ 0 that

z∗k = min
{

(λTAek)−1/α, dk

}
, (16)

where ek is the unit vector with a one as the k-th entry and
zeros elsewhere, and dk is the k-th entry of d.

We therefore have a closed-form expression for Θ1(λ)
and its maximizer, which means that we do not have to
approximate Θ1(λ) in the dual problem (13). The downside
of this approach, however, is that the master program is not
a linear program but a general convex optimization problem.
Since the evaluation of Θ1(λ) is very cheap, it might thus
be preferable to approximate both Θ1(λ) and Θ2(λ). In any
case, the complexity of evaluating the dual function is again
dominated by the six WSR maximization problems.

IV. NUMERICAL RESULTS

In this section, numerical results for the utilities asso-
ciated with max-min and proportional fair rate allocation
are provided. The example scenario we consider is the line
network depicted in Fig. 1. This is a commonly used geo-
metry where d12 = 1 is fixed and the relay is positioned on
the line connecting the two terminals such that d1R = |d|
and d2R = |1 − d|. The channel gain matrices HAB are
assumed to be random and independent, where the entries
of HAB are independent and identically distributed complex
Gaussian random variables with zero mean and variance d−4

AB .
In addition, we assume that the channels are reciprocal, i.e.,
HAB = HT

BA. The transmit power of node A is the same for
every phase i, i.e., P

(i)
A = PA. Finally, note that all results are

averaged over a number of independent channel realizations,
where perfect CSI is assumed for every realization.

1 R 2
d

1

1 − d

Fig. 1. Line network.
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(b) Proportional fairness.

Fig. 2. Comparison of optimal max-min and proportional fair utility values for different antenna and power configurations;
solid curves: P1 = P2 = PR = 10, dashed curves: P1 = 30, P2 = PR = 10.

Fig. 2 compares the optimal max-min and proportionally
fair utility values for different network configurations, where
the results are averaged over 100 channel realizations (250
for N1 = N2 = NR = 1). Not surprisingly, substantial gains
are achieved by equipping all nodes with multiple antennas.
For all symmetric scenarios, we see that the utilities do
not heavily depend on the relay position, but the best relay
position clearly is in the middle between the terminals. If one
terminal has more antennas and/or transmit power than the
other one, the utility increases as the relay is moved closer
to the terminal with less antennas/power, whereby the effect
is stronger for max-min fairness.

For an absolute accuracy of ε = 10−3, the average number
of cutting plane iterations ranged from 5–12, depending on
the choice of parameters and utility function. Note that both
Θ1(λ) and Θ2(λ) were approximated in the case of propor-
tional fairness. These relatively small numbers of required
iterations confirm that the approach proposed in this paper
allows to efficiently solve the considered class of utility
maximization problems.

V. CONCLUSION

We presented a generic method to efficiently solve utility
maximization problems in the half-duplex two-way MIMO
relay channel when the relay uses the decode-and-forward
strategy. To this end, a dual decomposition approach was
proposed, and we discussed how the resulting dual problems
can be tackled by means of the cutting plane algorithm. For
max-min, proportional, and α-fairness, we concluded that
the complexity of the proposed method is dominated by six
weighted sum rate maximization problems, which can be
solved using standard SDP tools. Finally, we remark that our
approach is also applicable to other communication protocols
that are often considered in the literature.
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