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ABSTRACT

This paper considers a multi-user single-relay wireless network,
where the relay gets paid for helping the users forward signals, and
the users pay to receive the relay service. We study the relay power
allocation and pricing problem, and model the interaction between
the users and the relay as a two-level Stackelberg game. In this
game, the relay, modeled as the service provider and the leader of
the game, sets the relay price to maximize its revenue; while the
users are modeled as customers and the follower who buy power
from the relay. For the relay power allocation among users, we use
a bargaining game model to achieve a fair allocation. Based on the
proposed fair relay power allocation rule, we then analyze the opti-
mal relay power price that maximizes the relay’s revenue, and derive
the analytical solution. Simulation shows that the proposed power
allocation scheme achieves a higher network sum-rate than the even
power allocation, and is fairer than the sum-rate-optimal alloca-
tion. We also show that the proposed pricing and power allocation
solution is consistent with the laws of supply and demand.

1. INTRODUCTION

Cooperative communication has been shown to be a promising con-
cept in future wireless networks. The basic idea is to have multiple
nodes in the network help each other’s transmission to achieve di-
versity. Numerous cooperative strategies aiming at optimizing the
global network performance have been proposed, e.g., [1]. Two
widely used ones are amplify-and-forward (AF) and decode-and-
forward (DF). For a multi-user relay network, one prominent issue
is the resource allocation among the users. There have been numer-
ous work on this issue, including the relay selection and relay power
allocation [2–4], most of which assume that nodes are altruistic and
always willing to cooperate to optimize the overall network perfor-
mance. In many practical applications, however, nodes are selfish
and aim to optimize their own benefit or quality-of-service. This in-
spires the use of game theory to model the selfish behavior of nodes
in a wireless network [5–8].

In [5] and [6], a two-user network where each user can also work
as a relay for the other is studied. By employing a two-user bargain-
ing game, fair bandwidth allocation [5] and power allocation [6] are
found from the Nash bargaining solution. The work in [7] studies the
user power control and pricing problems in a multi-user single-relay
network, where the relay sets the price to maximize its revenue. In
their work, a non-cooperative game is used to model the user be-
haviour, in which each user adjusts its transmit power to maximize
its own utility. A distributed iterative scheme is proposed to achieve
the unique Nash equilibrium point. In [8], for a single-user multi-
relay network, the relay selection and relay power control are inves-
tigated using a two-level Stackelberg game. In this game, the relays

compete to provide service to the user to gain revenue.
In this paper, we consider a multi-user single-relay network and

use game theory to model and analyze the user and relay selfish be-
havior. Pricing mechanism is used where the relay gets paid for
signal forwarding and users pay for the relay service. We model the
interaction between the relay and the users as a two-stage Stackel-
berg game, in which the relay is the leader who sets the unit power
price for the relay service, and the users are the followers who decide
how much power to purchase from the relay for a given relay price.
Different to [7], we consider the relay power allocation among users,
instead of the user power control; and also the relay power com-
petition among users is modeled as a cooperative bargaining game.
The Kalai-Smorodinsky bargaining solution (KSBS) of the bargain-
ing game is employed for a fair relay power allocation. Based on
the KSBS relay power allocation, we analytically find the optimal
relay price that maximizes the relay revenue. It is shown via sim-
ulations that the proposed KSBS power allocation is fairer than the
sum-rate-optimal power allocation with a small penalty in the net-
work sum-rate. It achieves higher network sum-rate than the even
power allocation and with a similar fairness. We also show that the
proposed pricing and power allocation solution is consistent with the
laws of supply and demand.

2. NETWORK MODEL

Consider a wireless network withN users communicating with their
destinations with the help of one relay as shown in Fig. 1. De-
note the channel gain from User i to Destination i as hi, the chan-
nel gain from User i to the relay as fi, and the channel gain from
the relay to Destination i as gi. The relay and destinations are as-
sumed to have global and perfect channel state information (CSI)
f1, · · · , fN , g1, · · · , gN through training and feedback. No CSI is
required at the users. User i uses transmit power Qi and the maxi-
mum transmit power of the relay is P .
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Fig. 1. Multi-user single-relay network.

Frequency division multiple access (FDMA) is used, so trans-
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missions of different users are orthogonal and interference-free.
Without loss of generality, we elaborate the transmission of User
i’s message on Channel i. We use the popular half-duplex two-
step AF relaying protocol. Let si be the information symbol of
User i. It is normalized as E(|si|2) = 1, where E stands for the
average. In the first step, User i transmits

√
Qisi, The signals re-

ceived by the relay and Destination i are yiR =
√
Qisifi + niR

and yiD =
√
Qisihi + niD , respectively, where niR and niD

are the additive noises at the relay and the destination in the
first step, respectively. In the second step, the relay amplifies
its received signal and forwards it to Destination i. Denote the
power the relay uses to help User i in forwarding information as
Pi. Since the relay has perfect CSI, coherent power coefficient
is used for better performance than non-coherent power coeffi-
cient [2]. The signal received at Destination i can be shown to

be yRi =
√

QiPi

Qi|fi|2+1
sifigi +

√
Pi

Qi|fi|2+1
giniR + nRD , where

nRD is the additive noise at the destination in the second step. All
noises are assumed to be i.i.d. additive circularly symmetric complex
Gaussian with zero-mean unit-variance.

After maximum-ratio combining of both the direct path and the
relay path, the effective received signal-to-noise-ratio (SNR) of User
i’s transmission can be shown to be

SNRi =
QiPi|figi|2

Pi|gi|2 +Qi|fi|2 + 1
+Qi|hi|2. (1)

If User i’s transmission is not helped by the relay and only the direct
transmission is active, the received SNR of User i’s transmission
becomes SNRiD = Qi|hi|2.

3. RELAY POWER ALLOCATION AND PRICING USING
GAME THEORY

In this section, we employ the Stackelberg game to model the in-
teraction between the users and the relay. To address the conflicts
among the users, we use the bargaining game for a fair allocation of
the relay power.

3.1. Stackelberg Game Model

We consider the relay as the leader who sets the price of its power
in helping the users. The relay revenue, denoted as uR, is the total
payment from the users. We use a simple pricing model by assuming
that the relay revenue is linear in the amount of power it sells, i.e.,
uR =

∑N
i=1 λPi, where λ is the normalized unit price of the relay

power and Pi is the power the relay uses to help User i.
We consider the users as the followers who react in a rational

way given the unit price of the relay power. In this work, we assume
that users make agreements to cooperatively share the relay power,
and use the bargaining game to model the negotiation among the
users. The first step to formulate the power allocation problem as a
bargaining game is to design the utility function. In this work, we
define User i’s utility function as

ui �
QiPi|figi|2

Pi|gi|2 +Qi|fi|2 + 1
+Qi|hi|2 − λPi, i = 1 · · ·N. (2)

The first two terms in (2) correspond to the effective received SNR of
User i given in (1) and represent the quality-of-service of the user. It
is directly related to the performance of the communication, e.g., the
achievable rate. The term λPi represents the user’s normalized cost
in purchasing the relay service. If User i does not buy any power
from the relay and uses the direct transmission only, i.e., Pi = 0,
it receives the minimum utility that User i expects, which is ui,0 =
Qi|hi|2.

In the following, we solve the power allocation and pricing prob-
lem jointly using the backward induction method [9]. That is, we
first solve the power bargaining game among users for a given price
of the relay power, then find the optimal price of the relay power
based on the derived user bargaining strategy.

3.2. User Game

The user game is to find the relay power allocation among the users
for a given unit relay power price λ. We use the Kalai-Smorodinsky
bargaining solution (KSBS) [10], which guarantees fairness in the
sense of equal penalty, to find a power allocation among the users.

For this purpose, we first define bi �
Qi|figi|2
Qi|fi|2+1

and show the fol-
lowing lemma, whose proof can be found in [12].

Lemma 1. Given the relay power price λ, the ideal power demand
of User i that maximizes its utility ui in (2) is

P I
i (λ)=

⎧⎪⎪⎨
⎪⎪⎩

0 if λ ≥ bi
Qi|fi|2√

bi
( 1√

λ
− 1√

bi
) if bi > λ > bi

(
biP

Qi|fi|2 + 1
)−2

P if λ ≤ bi
(

biP
Qi|fi|2 + 1

)−2

.

(3)
From Lemma 1, when the price is too high, User i will not purchase
any power from the relay. When the price is low, ideally, User i
wants to purchase all the relay power to maximize its utility. Other-
wise, User i will ask for part of the relay power that gives the ideal
balance between the SNR improvement and the cost.

Without loss of generality, we assume that the users are sorted
in the descending order of their bi values, that is b1 ≥ b2 ≥ · · · ≥
bN . With the given price λ, let L be the number of users satisfying
bi > λ, i.e., bL ≥ λ ≥ λL+1. From Lemma 1, for Users L +
1, · · · , N , their ideal power demand is 0 and they do not buy any
power from the relay. The first L users will enter the bargaining
game and purchase the relay service.

Given λ, for Users 1, · · · , L to find the KSBS is equivalent to
solving the following optimization problem [10]:

max
Pi

k s.t.
biPi

(Qi|fi|2)−1biPi + 1
− λPi = k

(
uI
i − ui,0

)
,

L∑
i=1

Pi ≤ P, and 0 < Pi < Qi|fi|2
(
1

λ
− 1

bi

)
, (4)

where k is a constant independent of users, the constraints in (4)
forces all players participating in the bargaining game to suffer the
same quality penalty in the logarithmic scale and uI

i = ui(P
I
i ) is

the ideal utility of User i that can be derived directly from (2) and
(3). The second constraint in (4) is due to the total power constraint
on the relay, and the last constraint is to ensure the feasibility of the
solution and ui > ui,0 for i = 1, · · · , L.

We now look at the last constraint in (4). It can be shown
that ui is a concave function of Pi [12]. Thus, for each value u ∈
(ui,0, u

I
i (λ)), there are two possiblePi’s in

(
0, Qi|fi|2(1/λ−1/bi)

)
that satisfy ui(Pi) = u: one in the range

(
0, P I

i (λ)
)

and the other
in the range

(
P I
i (λ), Qi|fi|2 (1/λ − 1/bi)

)
. Thus, we can shrink

the feasible region of Pi to either of these two. We choose the first
one, which results in a smaller Pi than the second region for the
same u value, for two reasons. First, the users prefer to buy less
power to gain the same utility. Second, smaller power consumption
for each user saves relay power so that more users can be helped.
With the last constraint being replaced by 0 < Pi < P I

i (λ), (4) is
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equivalent to the following max-min problem

max
Pi

min
i

{ biPi

(Qi|fi|2)−1biPi+1
− λPi

uI
i − ui,0

}
,

s.t.
L∑

i=1

Pi ≤ P, 0 < Pi < P I
i (λ). (5)

The proof of the equivalence is available in [12]. (5) is a convex
optimization problem and can be efficiently solved using standard
convex optimization techniques.

We call the solution of (5) the KSBS-based power allocation,
which are the relay power requested by the first L users. We show
the following properties of the KSBS-based power allocation, whose
proof can be found in [12].
Lemma 2. For a fixed λ, let the ideal power allocation of User
i be P I

i (λ), which is given in (3); and let the KSBS-based power
allocation be PK

i (λ). When
∑L

i=1 P
I
i (λ) ≤ P , we have PK

i (λ) =

P I
i (λ); when

∑L
i=1 P

I
i (λ) > P , i.e., the total ideal power demands

exceeds the relay power constraint, we have
∑L

i=1 P
K
i (λ) = P .

3.3. Relay Game

In the relay game, the relay set the price to gain the maximum rev-
enue. When the unit price of the relay power is λ, the revenue of the
relay is uR(λ) =

∑N
i=1 λP

K
i (λ), where PK

i (λ) is the relay power
allocated to User i based on the KSBS from (5). The relay pricing
problem can be formulated as:

max
λ

N∑
i=1

λPK
i (λ). (6)

Note that the relay power constraint
∑N

i=1 P
K
i (λ) ≤ P is always

guaranteed by the KSBS, thus needs not to appear explicitly in (6).
To solve the above optimization problem, we first show the fol-

lowing lemma.
Lemma 3. The optimal price is inside the interval [blb, b1), where
blb satisfies

∑N
i=1 P

I
i (blb) = P .

Proof. Note that bi’s are in non-increasing order. When λ ≥ b1,
from (3), P I

i (λ) = 0 for all i’s, and no user purchases any relay
power. Thus, the relay revenue is 0. This is obviously not optimal,
which means that the optimal price is smaller than b1. To prove the
lower bound, we can show that P I

i (λ) in (3) is a non-decreasing
function of λ, and thus

∑N
i=1 P

I
i (λ) ≥ P when 0 ≤ λ ≤ blb.

Consequently, from Lemma 2, all relay power will be allocated to the
users and

∑N
i=1 P

K
i (λ) = P . Thus, in the price range [0, blb], the

relay revenue is λ
∑N

i=1 P
K
i (λ) = λP , which reaches its maximum

at λ = blb. It shows that the optimal price is no less than blb.

To find blb, from the definition of blb in Lemma 3, we need to
solve the following equation:

ψ(blb)�
N∑
i=1

P I
i (blb) = P. (7)

Note that ψ(blb) in (7) monotonically decreases from ∞ to 0 as blb
increases from 0 to b1. To find the value of blb, we can first find the
M such that ψ(bM ) < P < ψ(bM+1). Thus, blb ∈ [bM , bM+1].
Within this price interval, from Lemma 1, P I

i (blb) = 0 for i =
M + 1, · · · , N . Therefore, by using (3), (7) becomes

ψ(blb) =
M∑
i=1

Qi|fi|2√
bi

(
1√
blb

− 1√
bi

)
= P, (8)

from which we have

blb =

(
M∑
i=1

Qi|fi|2√
bi

)−1(
P +

M∑
i=1

Qi|fi|2
bi

)
. (9)

In what follows, we solve the optimal relay power price analyt-
ically. Recall that M is the index such that bM ≥ blb ≥ bM+1.
Define γi � bi for i = 1, · · · ,M and γM+1 � blb. Further de-
fine Γ1 � [γ2, γ1) and Γi � [γi+1, γi] for i =, 2 · · · ,M . We thus
have divided the possible price range [blb, b1) into the following M
intervals:

[blb, b1) = ΓM ∪ ΓM−1 · · · ∪ Γ2 ∪ Γ1. (10)

Because
∑N

i=1 P
I
i (λ) is a non-increasing function of λ, inside

this price range [blb, b1), we have
∑N

i=1 P
I
i (λ) ≤ P . Thus, from

Lemma 2, PK
i (λ) = P I

i (λ). For the price range Γi, we have λ ≥
bi+1, thus only Users 1, · · · , i will purchase non-zero power. So the
price optimization problem in (6) can be rewritten as

max
i=1,2,···M

max
λ∈Γi

i∑
j=1

λP I
j (λ)

︸ ︷︷ ︸
Sub-problem i

. (11)

In (11), we have decomposed the optimization problem intoM sub-
problems, where the ith subproblem is to find the optimal price
within the range Γi. This subproblem and thus the optimization
problem in (11) are solved analytically in the following theorem,
the proof of which can be found in [12].

Theorem 1. Define ci �

(∑i
j=1

Qj |fj |2/
√

bj

2
∑

i
j=1

Qj |fj |2/bj

)2

, i = 1, · · · ,M .

The solution to Subproblem i is

λi �

⎧⎨
⎩
γi+1 if ci < γi+1,
γi if ci > γi,
ci if γi+1 ≤ ci ≤ γi.

(12)

The optimal relay power price, denoted as λ∗, is

λ∗ = argmax
λi

{(
i∑

j=1

Qj |fj |2√
bj

)
√
λi −

i∑
j=1

Qj |fj |2
bj

λi

}
. (13)

With Theorem 1, we can find the optimal price for the relay
power by solving the M sub-problems in (11) analytically, then find
the optimal price among the M sub-problem solutions that results in
the maximum relay revenue. We can see that its complexity is linear
in the number of users in the network.

4. SIMULATION RESULTS

In this section, we show the simulated performance of the proposed
relay power allocation and pricing solution, and compare it with the
sum-rate-optimal and even power solutions. The sum-rate-optimal
solution is the relay power allocation among users that maximizes
the network sum-rate without fairness consideration. The even
power solution allocates 1/N of the relay power to every of the N
users, and every user decides how much power to buy to maximize
its own utility but no more than 1/N of the relay power. We consider
Rayleigh flat-fading channels, where fi, hi, and gi are generated as
i.i.d. random variables following the distribution CN (0, 1). The
transmit power of the users is set to be 10 dB. The simulation results
follow the same trend for other values of user powers.
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Fig. 2. System sum-rate and fairness of a three-user relay network.

In the first simulation, we assume that there are three users and
the relay power ranges from 10 dB to 40 dB. We set the relay power
price to be the optimal according to Theorem 1. Fig. 2 compares the
network sum-rate and fairness of the proposed KSBS-based power
allocation solution with those of the sum-rate-optimal and the even
power solutions. It can be seen that for the system sum-rate, the
difference between our algorithm and the sum-rate-optimal solu-
tions is within 3.5%, while it is within 13% between the sum-rate-
optimal and the even power solutions. The proposed solution is
about 5 dB superior to the even power solution. For the fairness,
we use the average value of the normalized difference: [maxi(ri)−
mini(ri)]/maxi(ri), where ri is the achievable rate of User i. A
smaller difference indicates a fairer solution. We can see that our
solution has similar fairness to the even power solution and is fairer
than the sum-rate-optimal one.

Fig. 3 shows the optimal relay power price, the relay power actu-
ally sold, and the maximum relay revenue with two different network
settings. In Fig. 3(a), we use the same network setting as Fig. 2,
which corresponds to the scenario where the total user demand is
fixed while the relay power supply increases. We can see that when
the relay has more power to sell, the optimal relay power price is
lower, more relay power is sold, and the relay receives more rev-
enue. This complies with one of the laws of supply and demand [11],
which says that if supply increases and demand remains unchanged,
it leads to lower equilibrium price and higher quantity. In Fig. 3(b),
the relay power is fixed as 20 dB and the number of users varies from
5 to 15. This corresponds to the scenario where the relay power sup-
ply is fixed while the total user demand increases. From Fig. 3(b),
we can see that as the the number of users increases, the optimal
relay power price increases, the relay power actually sold increases,
and the maximum relay revenue increases. This fits one of the laws
of supply and demand, which says, if the supply is unchanged and
demand increases, it leads to higher equilibrium price and quantity.

5. CONCLUSION

In this paper, we study the relay power allocation and pricing prob-
lems in a multi-user single-relay network. The Stackelberg game is
used to model the interactions between the relay and the users, in
which the relay is the leader and sets the price of its power to gain
the maximum revenue, and the users are the followers who decide
how much power to purchase for a given price. Bargaining game is
used to model the interaction between the users and a KSBS-based
solution is proposed to achieve a fair relay power allocation among
users. Based on the KSBS solution, the optimal relay price is de-
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Fig. 3. Networks with increasing supply and demand.

rived analytically. By comparing with the sum-rate-optimal and the
even power allocations via simulations, we show that the proposed
solution achieves the tradeoff between the network sum-rate and the
fairness. It also reflects the laws of supply and demand.
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