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ABSTRACT

We develop a new method for tracking narrowband signals acquired
via compressive sensing. The compressive sensing phase-locked
loop (CS-PLL) enables one to track oscillating signals in very large
bandwidths using sub-Nyquist sampling. A key feature of the ap-
proach is the fact that we perform the frequency tracking directly on
the compressive measurements without ever recovering the signal.
The CS-PLL has a wide variety of potential applications, including
communications, phase tracking, and robust control.

Index Terms— Compressive sensing, phase-locked loop, FM
demodulation

1. INTRODUCTION

Compressive sensing (CS) is a recently developed field within signal
processing that enables the acquisition and recovery of sparse signals
without loss of information at a sampling rate significantly below
the Nyquist rate. CS uses a randomized measurement system, and
typically recovers the signal via convex optimization or one of a fleet
of greedy recovery algorithms. Several hardware architectures have
applied this theory to wideband analog signals.

Unfortunately, sparse recovery algorithms are relatively com-
putationally expensive. For streaming applications such as radio
receivers, low computational complexity and real-time recovery is
paramount. Furthermore, the finite-dimensional nature of existing
recovery algorithms requires that streaming (infinite-length) signals
must be processed in finite-length blocks, often introducing signif-
icant input-output delay and blocking artifacts at the boundaries.
Thus, classical CS recovery algorithms are not appropriate for most
real-time applications.

In this paper we develop a phase-locked loop (PLL) architecture
that extracts phase and frequency information directly from com-
pressive samples of modulated signals [1]. This has a variety of
applications involving frequency and phase tracking, such as the de-
modulation of frequency modulated (FM) signals. Since the mod-
ulated signal is never fully recovered, the CS-PLL offers compu-
tational advantages over streaming CS recovery algorithms, such
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Fig. 1. Basic discrete time PLL design.

as [2], that would require the use of a conventional PLL on the re-
covered signal. Thanks to the implementation of other signal pro-
cessing operations in the compressive domain, such as filtering and
detection systems [3], the CS-PLL can be integrated smoothly into
devices such as wideband compressive radio receivers, which can
track and monitor a wide range of radio frequencies in real-time.

A special case of the CS-PLL includes PLLs that use random
sampling, which have been explored in previous works. For in-
stance, a simple FPGA implementation of a phase-locked loop for
quantized additive random sampling (ARS) was supported with nu-
merical simulations for varying loop filter parameters in a random
sampling PLL for synchronization applications in [4]. This paper
generalizes this approach to more generic CS sampling schemes.

In the next section we establish our notational lingo and pro-
vide the relevant background on PLLs, CS, and practical compres-
sive samplers. Section 3 introduces the CS-PLL, while Section 4
provides an analysis of its key features. Section 5 provides experi-
mental results of the system, while Section 6 concludes the paper.

2. BACKGROUND

2.1. Phase-locked loop (PLL)

The phase-locked loop (PLL) is a well-established method for track-
ing the frequency and phase of a signal x[n] using a feedback loop
to continuously update an estimate of the parameters of the signal.
Figure 1 shows a typical discrete-time real-valued PLL architecture.
The phase detector and loop filter estimate the phase difference be-
tween x[n] and a reference signal u[n] by multiplying the two signals
and low-pass-filtering the product to obtain

θ[n] =
∑
k

x[k]u[k]h[n− k], (1)

where h[n − k] is the impulse response of the low-pass filter. The
phase estimate is used by an oscillator to produce the reference sig-
nal (with sinusoidal carrier)

u[n] = cos(ωn+ θ[n]). (2)
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Fig. 2. Random demodulator (RD) in (a) continuous-time and (b)
discrete-time.

The PLL works by adjusting the estimate of θ[n] until x[n] and u[n]
are approximately orthogonal.

A second-order loop enables the PLL to track both a signal’s
phase and frequency, while higher-order systems can be useful for
handling Doppler effects. A standard baseline model of a PLL has a
loop filter described by the transfer function

Hl(z) = C2

(z − 1) + C1
C2

(z − 1)
, (3)

where C1 = ω2
n, and C2 = 2ζωn. For more information on PLLs,

see [5].

2.2. Compressive sensing

In the ecumenical CS framework [6], we acquire a signal x ∈ R
N

that is sparse or compressible in some basis, via the measurements
y = Φx, with Φ an M × N matrix with M � N which repre-
sents the sampling system. The reduction in measurements is en-
abled by the properties of Φ, in particular the restricted isometry
property (RIP). First we define ΣK = {x ∈ R

N : ‖x‖0 ≤ K}
where ‖x‖0 := |supp(x)| counts the number of non-zero entries of
x, i.e., ΣK is the set of all K-sparse signals in R

N . The RIP of order
K of a matrix Φ implies that

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (4)

holds for some constant δ ∈ (0, 1) over all x ∈ ΣK , (i.e., Φ acts as
an approximate isometry on the set of vectors that are K-sparse).

2.3. Practical compressive samplers

While CS theory often focuses on random matrix constructions of Φ,
there are also a variety of practical CS sampling methods, including
random demodulation (RD) [7], random sampling [8], and the com-
pressive multiplexer (CMUX) [9]. The random demodulator, which
we use in our simulations yonder is described here for reference.
An analog input x(t) is modulated with a pseudo-random square
wave with amplitude ±1s, called the chipping sequence pm(t), with
transition frequency at or above the Nyquist rate NaHz of the in-
put signal. Next, integration over a time period 1/Ma is performed
on the mixed signal, and lastly this result is sampled at MaHz <
NaHz. The architecture of the RD is depicted in Fig. 2(a), whereas
a discrete-time model (which will be used inside the CS-PLL) is
shown in Fig. 2(b).

If desired, multiple random demodulators can be offset and their
outputs interleaved to obtain a higher rate of compressive samples
without increasing the complexity of ADC hardware (as explained
in [2]). We define N/M as the overall compression ratio in this
scenerio, whereas L is the window size of an individual random de-
modulator. In the case of a single random demodulator RD, we have
a window of length L = N/M where the pm[k] are ±1. Alterna-
tive chipping sequences, such as one consisting of Gaussian random
coefficients can also be used.
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Fig. 3. Block diagram of CS-PLL.

3. CS-PLL SYSTEM DESCRIPTION

We now introduce the CS-PLL, a new family of digital and mixed
analog/digital PLLs based on CS. Recall that the phase estimate up-
date calculation in the basic PLL is the (weighted) inner product
between the Nyquist-rate samples x[n] of the signal we wish to es-
timate/track and the estimated signal u[n] generated by the oscil-
lator. If both x[n] and u[n] can be represented by not only their
Nyquist rate samples but also their (lower rate) compressive samples
(with x[n] producing y[m] and u[n] producing v[m]), then the RIP
guarantees that the standard inner product between their compres-
sive samples y[m] and v[m] will be very close to the inner product
between their Nyquist rate samples x[n] and y[n] [10]. Hence the
angle is maintained between the vectors.

Leveraging this insight, we introduce two compressive sam-
plers into the basic PLL system to create the CS-PLL shown in
Fig. 3. The first sampler acquires compressive samples y[m] of the
continuous-time input signal x(t). (Note that the architecture could
also easily accommodate a discrete-time input signal x[n]. For sim-
plicity we focus in this paper only on the continuous-time case.) The
second converts the oscillator”s Nyquist rate samples u[n] into the
compressive samples v[m]. The sampling operation in the loop—
which is the discrete-time model for the compressive sampler used
to acquire the signal—is causal and efficient to implement.

As with the classical PLL, the CS-PLL computes the phase esti-
mate inner product

θ[m] =
∑
k

y[k]v[k]h[m− k], (5)

with index m denoting the lower sampling rate and h[n] mimicing
the response of the higher rate filter in the Nyquist-rate PLL. A non-
linear and/or time-varying filter could also be used here, for example
if we had a signal with varying message bandwidth, just as in the
traditional case.

4. ANALYSIS AND MODELLING OF THE CS-PLL

In this section, we analyze the properties of the CS-PLL and use a
simple model to study its stability properties.

4.1. Estimation

We first show that the CS-PLL is a maximum likelihood estimator of
a modulated signal’s phase and frequency. To begin, suppose that the
CS-PLL is frequency locked, and thus we are only trying to estimate
the signal’s phase [5]. This is a safe assumption in typical PLL anal-
ysis; large frequency offsets prevent the loop from locking, whereas
small offsets are handled with other structures such as second-order
loops. Our signal of interest

x(t) = cos(ωct+ θ) (6)
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(with ωc the continuous time frequency), is compressively sampled
and corrupted with additive white Gaussian noise (AWGN) wi[m].
Thus, we obtain

y[m] =

∞∑
k=−∞

pm[k] cos(ωk + θ) + wi[m] (7)

where pm[k] denotes the pseudo-random coefficients for sample m
(i.e., element (m, k) of the sampling matrix Φ corresponding to the
compressive sampler) and ω is the Nyquist-rate discrete-time fre-
quency corresponding to ωc. Although pm[k] may be a pseudoran-
dom sequence, the sequence is known to the system, and thus our
sole source of randomness is the input noise wi[m] over a set of M
measurements. AWGN added to x(t) is simply scaled AWGN on
y[m].

We now show that the CS-PLL can be viewed as a maximum
likelihood (ML) estimator (and, assuming independent measure-
ments, an MMSE estimator as well) by considering a signal with
slowly varying phase over M measurements. The tracking error

variance of the unbiased estimator

∞∑
k=−∞

pm[k] cos(ωk+ θ̃) assum-

ing each measurement is independent is

σ2 =
M∑

m=1

(
y[m]−

∞∑
k=−∞

pm[k] cos(ωk + θ̃)

)2

(8)

where θ̃ represents the quantity we are estimating. Taking the deriva-
tive of σ2 with respect to θ̃

∂σ2

∂θ̃
= 2

M∑
m=1

(
y[m]

∞∑
k=−∞

pm[k] sin(ωk + θ̃)

−
∞∑

k=−∞
pm[k] cos(ωk + θ̃)×

∞∑
k=−∞

pm[k] sin(ωk + θ̃)

)
(9)

Two terms are present in each measurement m: the correlation
of y[m] with the compressive measurements of a 90-degree out-of-
phase reference output and a offset term independent of the output.
The correlation term confirms that the compressive sampler model
in the loop should match that used on the input. For the offset
term, we note that if the pm[k] terms are generated independently
of each other with mean zero, then when we treat pm[k] as random
and consider the average case of M samples by finding the expected
value over pm[k]. The second terms in the summation reduce to

∞∑
k=−∞

(pm[k])2 cos(2(ωk + θ̃)), which would be filtered out by the

low-pass filter in the CS-PLL. Ignoring this offset simplifies our sys-
tem’s complexity and corresponding analysis model and does not
drastically affect performance. The CS-PLL naturally acts to achieve
average case performance over time with its loop filters and adaptive
nature.

4.2. Linear model for the CS-PLL

Next we develop a simplified linear model for the PLL and de-
termine its transfer function and other characteristics. Given
an RD with chipping sequence pm

[
N
M
m+ k

]
and Nyquist rate

samples x[k] = sin(ωk + θ1[k]) and u[l] = cos(ωl + θ2[l])
with ω the discrete-time Nyquist frequency, the multiplier output

Loop Filter
Hold

+ +

Phase Update

Noise

Fig. 4. Linear sample-and-hold model for CS-PLL stability analysis
using RDs.

y[m]v[m] consists of two terms

L−1∑
k=0

(pm [rk])
2 x [rk]u [rk] and

L−1∑
k=0
k �=l

L−1∑
l=0

pm [rk]x [rk] pm [rl]u [rl] where L is the window size of

the random demodulator before downsamping, and rk = N
M
m+ k.

The first sum accumulates Nyquist-rate samples, and the second ac-
cumulates cross-term noise wc[m]. wc[m] which is zero-mean and
uncorrelated with the input (and feedback) due to the randomness
introduced by the RD. Using ±1 modulation in the RD implies that
(pm [rk])

2 = 1.

Since wc[m] is zero-mean and uncorrelated with the input and
the feedback term, we can formulate a linear model for the phase as
well. As before, our model includes an FIR filter with L random taps

equal to the
(
pm
[
N
M
m+ k

])2
and downsampling by N

M
following

the phase detector. For a sampler that contains only a single RD,
L = N/M . This FIR filter model has sharp nulls at multiples of the
aliasing frequency, indicating that we continue to remove narrow-
band noise that CS is designed to prevent. The loop filter operates
at the lower sampling rate and a sample and hold element is added
to this input to the oscillator to return the sampling rate to the orig-
inal high rate. The linearized model is shown in Fig. 4(b). Similar
to [11], we can write the system equations.

The open loop transfer function is

Hop =
z−1

N
M
(1− z−1)

(
1− z−N/M

1− z−1

)(
1− z−L

1− z−1

)
Hl(z

N/M )

with Hl(z
N/M ) the loop filter. The closed loop transfer function is

Hcl(z) =
F (z)

N
M
(1− z−1)2 + F (z)

(10)

where F (z) = C2z
−1(1− z−N/M (1− C1

C2
))(1 + · · ·+ z−(L−1)).

Using the loop filter described by (3), we choose filter parameters
C1 and C2 such that the poles of the transfer function are within
the unit circle and the loop filter has the appropriate characteristics
for the error signal. Although solving this high-order polynomial
analytically for bounds is difficult, we find heuristically that reduc-
ing C1 and C2 by the compression ratio N/M makes the system
stable in the case of a single random demodulator. Assuming the
loop filter is designed properly to ensure stability, a zero steady state
phase error for an initial frequency offset will result, found by solv-
ing ess = limz→1(z− 1)(1−Hcl(z)). Because of the accumulate-
and-dump component in this model, the loop order is L + N/M ,
verifying the potential for increasing instability as the compression
grows. If we were to interleave multiple random demodulators (with
L a multiple of N/M ), the stability of the system becomes a much
greater concern.
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Fig. 5. Output SNR for a random demodulator when using Bernoulli
coefficients, normalized Gaussian coefficients, and when including
the offset in the phase detector, each for varying input SNRs

5. SIMULATIONS

To simulate the performance of the CS-PLL, we use a sampling rate
of 2.048MHz, and a oscillator frequency of 120kHz, and simple
second-order filter with loop bandwidth of 10kHz (adjusted in the
discrete domain for the appropriate compressive sampling rate). Our
first input signal is a compressively sampled FM-modulated 2.5kHz
signal with frequency deviation of 1.6kHz. Data is sampled using a
random demodulator with ±1 taps.

We quantify the CS-PLL’s performance in terms of its output
SNR and compare with a more conventional Nyquist-rate PLL for
various and compression factors averaged over 25 trials. Note that
the performance of the conventional PLL corresponds to a logarith-
mic compression factor of N/M of 0, shown at the left edge of the
plots. We do not use an MMSE error criterion due to the inherent
delay in discrete-time PLLs. Instead, the output SNR is measured
by dividing the signal power by the noise power in the frequency
spectrum, computed over an average 250 Hz band around the signal
of interest (the noise is relatively flat over the spectral region of in-
terest, and traditionally out-of-band noise is filtered at the output of
a PLL).

From Fig. 5, we see that at high input SNR, there is an initial
sharp drop in the SNR when compression is used due to the intro-
duced cross-term noise, but then it smooths to a more gradual 3 dB
per factor of 2 compression due to noise-folding. Wideband noise
folding continues to be an inevitable consequence of using CS, just
as it appears in traditional CS recovery algorithms [12].

The performance of the CS-PLL improves slightly when an ad-
ditional offset factor is added to the phase detector based on the cur-
rent phase estimate derived with our maximum likelihood estimator
in (9), though in many practical scenerios it can be ignored.

Compression rates in the wideband receiver are not limited to
powers of 2. In Fig. 6, we apply the CS-PLL to a simulated high-
power cordless phone input signal of 25 dB input SNR with a com-
pression ratio of 20. The output of the CS-PLL closely resembles
the result of FM demodulation using a Hilbert transform and phase
unwrapping.

6. CONCLUSIONS

This paper has developed a framework for constructing phase-locked
loops that perform phase and frequency tracking directly on com-
pressive measurements. The ideas could be extended relatively eas-
ily to any variants of the PLL that use a multiplier phase detector. A
variety of applications could utilize the CS-PLL, ranging from com-
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Fig. 6. CS-PLL output compared to traditional FM demodulation of
the Nyquist-rate samples.

munication schemes using phase or amplitude modulation, GPS, and
industrial control applications. Future work includes a more thor-
ough probabilistic non-linear analysis of the transient characteristics
of the CS-PLL, such as lock time, cycle slipping, and instantaneous
phase error.
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