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ABSTRACT

A new framework is proposed for deriving adaptive algo-
rithms for sparse channel estimation under the presence of
Symmetric α-Stable (SαS) noise. The algorithmic frame-
work employs the natural gradient and incorporates both the
Lp norm of the channel prediction error and the L0 norm
of the complex-valued channel taps. Based on this frame-
work, a novel affine projection sign algorithm is derived and
compared against the improved proportionate affine projec-
tion sign algorithm (IPAPSA) by estimating an experimental
underwater acoustic (UWA) channel under the presence of
simulated SαS noise. Enhanced convergence rate and track-
ing performance is demonstrated at the expense of a slight
increase in computational complexity.

Index Terms— impulsive noise, underwater acoustic
communications, fractionally lower-order moment algo-
rithms.

1. INTRODUCTION

Symmetric α-Stable (SαS) distributions model many random
phenomena, such as fluctuations in gravitational fields, stock
prices, low-frequency atmospheric noise, and man-made
noises [1]. In underwater acoustics, Chitre et al [2] showed
that the impulsive ambient noise due to snapping shrimp can
be characterized as SαS. It is well known that, second and
higher order moments of SαS random variables do not ex-
ist. Hence, any adaptive filter for system identification that is
based on L2 norm minimization will suffer poor performance.

Underwater acoustic (UWA) communication channels
exhibit long, time-varying, and often sparse impulse re-
sponses [3]. Recently, an improved proportionate algorithm
that employs the Lp norm, p ∈ [1, 2), has shown robust per-
formance under SαS noise [4]. Although this algorithm has
linear complexity, it suffers from slow convergence rate when
colored input signals are used. A notable algorithm that is
robust under both impulsive noise and colored input signals
and manages to exploit channel sparseness is the improved
proportionate affine projection sign algorithm (IPAPSA) [5].
Although the IPAPSA employes a proportionate matrix to

exploit sparseness, faster convergence will be possible if the
L0 norm of the filter taps is included in its cost function.

This paper is an incremental work of [4] and proposes an
enhancement of the IPAPSA with a slight increase in com-
plexity. The proposed algorithm is based on natural gradi-
ent adaptation [6] and incorporates an Lp norm of the channel
prediction error and a differentiable L0 norm of the complex-
valued filter taps. The performance of the new algorithm
is demonstrated by identifying an experimental sparse UWA
channel under simulated SαS noise.

Notation and definitions: Superscripts , †, and ∗ stand for
transpose, Hermitian transpose, and conjugate, respectively.
Column vectors (matrices) are denoted by boldface lowercase
(uppercase) letters. Let z ∈ C and p � 1. The Lp norm of z is
defined as |z|p (|Re{z}|p + | Im{z}|p)1/p. The sign func-
tion of z is defined as csgn(z) sgn(Re{z})+j·sgn(Im{z}),
where sgn(·) stands for the sign function of a real scalar. Let
z ∈ CN . The sign function of z is given by the column vec-
tor csgn(z) with elements csgn(zi), i = 0, . . . , N − 1. The
Lp norm of z is defined as ||z||p (

N−1
i=0 |zi|pp)1/p. The

L0 norm of z, denoted as ||z||0, equals to the number of the
non-zero entries of z.

2. THE IPAPSA

The original IPAPSA was applied to network echo can-
cellation (NEC) adaptive filters with real-valued coeffi-
cients [5]. For our purposes, we modify IPAPSA to in-
clude complex-valued coefficients. Let us consider an UWA
channel, which is described by the unknown K-tap vector
h[n] [h0[n]h1[n] . . . hK−1[n]] at discrete time n. The
channel output signal is given by

y[n] = h[n]†x[n] + w[n], (1)

where x[n] [x[n]x[n−1] . . . x[n−K+1]] is the vector of
the K most recent input samples and w[n] is a complex SαS
random variable. Let us denote ĥ[n] the estimate of h[n] and
let L be the projection order of the IPAPSA. The a priori and
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a posteriori error vectors are defined as

e[n]∗ = [e[n]∗ e[n− 1]∗ . . . e[n− L+ 1]∗] (2)

= y[n]∗ −X[n]†ĥ[n− 1] (3)

ē[n]∗ = [ē[n]∗ ē[n− 1]∗ . . . ē[n− L+ 1]∗] (4)

= y[n]∗ −X[n]†ĥ[n], (5)

where X[n]=[x[n]x[n − 1] . . .x[n − L + 1]] is the K × L
matrix of input samples and y[n]=[y[n] y[n−1] . . . y[n−L+
1]] contains the L most recent output samples. The IPAPSA
channel update is given by [5]

ĥ[n] = ĥ[n− 1] + μ
xgs[n]

δ + �xgs[n]�22
, (6)

where xgs[n]=G[n − 1]X[n]csgn(e[n])∗, μ ∈ (0, 1) is the
step-size parameter, and δ > 0 is a regularization constant.
The role of the proportionate matrixG[n] is to assign a time-
varying step-size to each filter tap in proportion to the tap’s
magnitude so that active taps converge faster than inactive
(zero or close to zero) ones. The most popular form of G[n]
is given by the K × K diagonal matrix of the IPNLMS al-
gorithm [7]. For complex-valued taps, we modify G[n] as
follows

1− β

2K
+ (1 + β)

ĥk[n]
1

2 ĥ[n]
1
+ �

, 0 ≤ k ≤ K − 1, (7)

where � is a small fixed constant to avoid division by zero,
and β ∈ [−1, 1] is the parameter that controls the sparseness
of the solution. Highly sparse channels should have β close
to one while non-sparse channels should have β = −1.

3. NEW ALGORITHMIC FRAMEWORK

Here we consider the problem of channel identification under
the presence of SαS noise when the characteristic exponent
α ∈ (1, 2). We focus on channel estimates that can be ex-
pressed as ĥ[n]=ĥ[n − 1] + r[n], r[n] being the channel up-
date vector. According to [8], an efficient adaptive algorithm
must be conservative (avoid radical changes of ĥ[n] from one
iteration to the other) and corrective (ensure better channel
estimate if the same input and output were to be observed at
two consecutive times). Towards this end, the new algorithm
is derived by minimizing the following cost function:

J [n] = �ē[n]�pp + δr[n]†A[n− 1]r[n] + γ ĥ[n]
0
, (8)

where δ, γ positive parameters and p < α ensures con-
vergence of the algorithm since any moment of the form
E[�ē[n]�pp], p ≥ α, is infinite. The term r[n]†A[n − 1]r[n]
in (8) is the Riemannian distance between ĥ[n] and ĥ[n− 1].

The Riemannian metric tensor A[n − 1] is a K × K pos-
itive definite matrix that describes the curvature of the K-
dimensional parameter space at ĥ[n − 1]. The regularizing
term ||ĥ[n]||0 in (8) is used to further accelerate the conver-
gence of the zero filter taps. Following the line of thought
in [9], ||ĥ[n]||0 is approximated by the differentiable function

ĥ[n]
0
	

K−1

k=0

1− e−η|ĥk[n]|1 , η > 0. (9)

Let ζ denote the smallest non-zero tap of the channel, then
the parameter η may be chosen as η 	 5/ζ. In practice, an
estimate of ζ may be acquired by cross-correlating a short
pulse before transmitting the actual data signal.

Taking the complex gradient of J [n]with respect to r[n]∗,
we have the following terms:

∇r[n]∗ �ē[n]�pp =
−p
2

L−1

k=0

|ē[n-k]|p−1p−1 csgn(ē[n-k])∗x[n-k]

(10)

∇r[n]∗ δr[n]†A[n− 1]r[n] = δA[n− 1]r[n]. (11)

In addition, the gradient of (9) with respect to rk[n]∗, k=0,
. . . ,K − 1 is equal to

∇rk[n]∗ γ ĥ[n]
0

=
γη

2
e−η|ĥk[n]|1 csgn ĥk[n]

=
γη

2
νk[n] (12)

Setting ∇r[n]∗J [n]=0, and combining terms from (10), (11),
and (12) we note that the resulting equation is non-linear with
respect to r[n]. To solve for r[n], it is plausible to assume that
at steady-state e[n] 	 ē[n]. Thus, we now have

r[n] = A[n− 1]−1 p

2δ
X[n]s[n]− γη

2δ
ν[n− 1] (13)

where ν[n] is the vector with entries νk[n] and s[n] is the vec-
tor with elements |e[n-k]|p−1p−1csgn(e[n-k])∗, k=0, . . . , L − 1.
To further simplify the algorithm and avoid matrix inversion
issues, we choose A[n]=G[n]−1. Moreover, we introduce a
step size parameter, μ ∈ (0, 1], that exercises control over the
change of the tap values from one iteration to the next. Thus,
the channel update vector is deduced as follows:

ĥ[n] = ĥ[n−1]+μG[n−1] p

2δ
X[n]s[n]− γη

2δ
ν[n− 1] .

(14)
Equations (14) and (7) will be called the L0-IPAPSA here-

after. The algorithm is initialized for ĥ[0]=0. Since G[n] is
diagonal, the number of complex multiplications required for
L0-IPAPSA is K(L + 6)+2L, slightly increased compared
to that of IPAPSA. Note that if L=1, the L0-IPAPSA boils
down to a new L0 norm constrained sign-error IPNLMS al-
gorithm (we name it L0-sIPNLMS hereafter) while if L=1
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and γ=0, then the L0-IPAPSA reduces to the sIPNLMS al-
gorithm of [4]. Moreover, when L=1, γ=0, and β=-1 then
L0-IPAPSA boils down to the Least Mean p-Norm (LMP) al-
gorithm [1]. Two final remarks are in order: (a) equation (8)
provides a platform for generating new sparse, affine projec-
tion, Lp norm based algorithms if different matricesA[n] and
L0 norm proxies are used and (b) using (9) in (8) renders J [n]
a non-convex cost function and therefore, the algorithm could
in principle stall at a local minimum. However, if γ is cho-
sen sufficiently small (as we show below), then the algorithm
always converges to meaningful solutions.

4. SIMULATION RESULTS

We now compare L0-IPAPSA against IPAPSA, IPAPA [11],
L0-sIPNLMS, and sIPNLMS [4] by performing two com-
puter generated experiments. The colored input signal is
generated by a 6250 symbols/ s-rate Q-PSK modulated m-
sequence that is pulse-shaped by a raised cosine filter with
roll-off factor 0.25 and truncation length ± 4 symbol in-
tervals. The output signal is generated in baseband at
12.5 kHz rate (2 samples/symbol) by using (1). The im-
pulse responses to be identified were measured during the
Focused Acoustic Fields (FAF) experiment off the coast
of Pianosa Island, Italy in 2005. Fig. 1(a) illustrates the
sparse, time-varying channel to be identified. To gener-
ate this figure, 156 FAF successive impulse responses are
employed where each response is kept fixed for 9.6ms dur-
ing transmission. The channel length in samples is K=438
(35ms). The performance measure is the normalized mis-
adjustment (in dB), 20 log10(||h[n] − ĥ[n]||2/||h[n]||2) and
is computed after averaging 200 independent runs. In all
simulations below, p=1, β=0.5, η=100, γ=0.01(2δ/μ η) and
δIPAPA=c(1 − β)σ2x/2K, c being a fixed parameter and
σ2x = 1 is the power of the input signal.

The first experiment tests the misadjustment of all algo-
rithms by estimating the channel of Fig. 1(a) under SαS noise.
The simulated SαS noise is generated based on the signal
parameters used in the FAF experiment, i.e., 7.81 kHz band-
width, 37.5 kHz sampling rate, and 12 kHz carrier frequency.
The SαS noise parameter α=1.65. The noise simulator can be
found in [12]. Fig. 1(b) reports on the misadjustment when the
signal-to-noise ratio (denoted as SNRα and defined in [4]) is
30 dB. Clearly, the L0-IPAPSA shows the lowest misadjust-
ment from all other algorithms. Note that both L0 norm-based
algorithms exhibit better tracking than IPAPSA validating the
use of the ||ĥ[n]||0. Fig. 1(c) reports on the misadjustment
when SNRα=15 dB. Observe that the L0 norm-based algo-
rithms still have better tracking than IPAPSA but L0-IPAPSA
shows only 0.5dB better tracking than L0-sIPNLMS after 1 s.
Finally, we see that the IPAPA has poor performance for both
high and low SNRα, corroborating that L2 norm minimiza-
tion criterion is not a judicious choice for SαS noise.

The second experiment tests the misadjustment of all al-

(a)

(b)

(c)

Fig. 1. (a) Channel used in simulations. The x-axis shows
multipath delay, the y-axis shows absolute time and the
colorbar shows amplitude in linear scale. (b) Misadjustment
for all algorithms when SNRα=30 dB, μL0−IPAPSA=0.1,
μIPAPSA= 0.03, μsIPNLMS= μL0−sIPNLMS= 0.4,
μIPAPA= 0.2, c= 10, δL0−IPAPSA= δsIPNLMS=
δL0−sIPNLMS= 2, δIPAPSA= 0.00013, L= 20. (c) Misad-
justment for all algorithms when SNRα= 15 dB, μIPAPSA=
0.005, δL0−IPAPSA=δsIPNLMS=δsIPNLMS−L0= 3. All
other parameters are the same as those in (b).
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(a)

(b)

Fig. 2. (a) Misadjustment for all algorithms when
SNR= 30 dB, μIPAPSA= 0.07, μIPAPA= 0.9, c = 20,
δL0−IPAPSA= δsIPNLMS= δsIPNLMS−L0= 1. Other para-
meters are the same as those in Fig. 1(b). (b) Misadjustment
for all algorithms when SNR= 15 dB, c= 100. Other para-
meters are the same as those in (a).

gorithms by using the channel of Fig. 1(a) in the presence
of complex Gaussian noise. Recall that Gaussian noise is
a class of SαS noise when α = 2. Fig. 2(a) is generated
for SNR=30 dB. We see that IPAPA has the lowest mis-
adjustment for 1.1 s but after it shows similar performance
with that of the L0 norm-based algorithms. Note also that L0-
IPAPSA offers better tracking than IPAPSA for most of the
time. Fig. 2(b) shows the misadjustment for all algorithms
when SNR=15 dB. Surprisingly, all the affine projection
sign algorithms demonstrate better tracking than IPAPA. We
also see that L0-IPAPSA shows better tracking than IPAPSA
after 1 s.

5. CONCLUSION

A novel algorithm, the L0-IPAPSA, was proposed for sparse
channel identification in the presence of SαS noise. The pro-
posed algorithm was based on the Lp norm minimization cri-
terion and used both the natural gradient and the L0 norm of
the channel response to exploit channel sparseness. The L0-
IPAPSA was compared against the IPAPSA by estimating an

experimental sparse, time-varying acoustic link under simu-
lated SαS noise. The clear superiority of L0-IPAPSA was
demonstrated in high and low SNR.
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