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ABSTRACT

In an interference network, joint power and admission control aims

to support a maximum number of links at their specified signal to

interference plus noise ratio (SINR) targets while using a minimum

total transmission power. Since this problem is NP-hard, convex ap-

proximation heuristics have been considered in the literature. In this

work, we first reformulate the problem as a sparse �0-minimization

problem and then relax it to a linear program (LP). Then, we derive

an easily-checkable necessary condition for all links in the network

to be simultaneously supported at their target SINR levels, and use it

to iteratively remove strong interfering links (deflation). Numerical

simulations show the proposed heuristic compares favorably with the

existing approaches in terms of both the number of supported links

and speed.

Index Terms— Admission control, convex approximation,

power control, sparse optimization.

1. INTRODUCTION

Power control has been studied extensively in the contexts of cellu-

lar, ad-hoc, and cognitive underlay networks [1, 2, 3, 4, 5]. Its aim

is to use the minimum total transmission power to support all links

in an interference network at their SINR targets. In this way, the

network can enjoy a high spectral efficiency.

A longstanding issue associated with power control is that it of-

ten becomes infeasible, i.e., not all links in the network can be simul-

taneously supported at their SINR targets. This paper focuses on the

infeasibility issue and examines efficient ways to selectively rejec-

t links so that the remaining ones can be simultaneously supported

at their desired SINR levels. The goal is to maximize the number

of links simultaneously supportable at their required SINR targets

while using the minimum total transmission power.

This joint power and admission control problem can be solved

to global optimality by checking the simultaneous supportability of

every subset of links. However, the computational complexity of
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this enumeration approach grows exponentially with the total num-

ber of links. Theoretically, the problem is known to be NP-hard [1],

so various heuristic algorithms have been proposed for this problem.

Among them, the GRN-DCPC algorithm is proposed in [3], where

the power is updated by a modified version of Foschini-Miljanic al-

gorithm [4]. A convex approximation-based algorithm is derived in

[1] for the joint power and admission control in cognitive underlay

networks. Instead of directly solving the original NP-hard problem,

the idea of the proposed linear programming deflation (LPD) algo-

rithm is to approximate the problem by an LP whose solution can be

used to iteratively remove interfering links. The recent work [2] also

develops a removal-based algorithm for this problem.

In this paper, we reformulate the joint power and admission con-

trol problem as a sparse �0-minimization problem. We then use the

�1-relaxation to derive a linear program (different from that in [1])

whose solution can be used to guide an iterative link removal proce-

dure (deflation). Numerical results show that the proposed algorithm

compares favorably with the existing approaches [1, 2, 3] in terms of

both the number of supported links and speed.

Notation: We use ‖x‖0 to denote the number of nonzero entries

in a vector x. For any subset I ⊆ K, we use AI to denote the matrix

formed by the rows of A indexed by I. For a vector x, the notation

xI is similarly defined. We use e to represent the vector with all

components being one.

2. PROBLEM FORMULATION

Consider a K-link (K transmitter and receiver pairs) single-input

single-output interference channel with channel gains gkj ≥ 0

(from the transmitter of link j to the receiver of link k), noise power

ηk > 0, SINR target γk > 0, and power budget pmax
k > 0 for

k, j ∈ K := {1, 2, · · · ,K}. Denote the power allocation vec-

tor by p = (p1, p2, · · · , pK)T and the power budget vector by

pmax = (pmax
1 , pmax

2 , · · · , pmax
K )T . The joint power and admission

control problem can be mathematically formulated as a two-stage

optimization problem, i.e., the first stage maximizes the number of

admitted links:

max
p,S

|S|
s.t. SINRk ≥ γk, k ∈ S ⊆ K,

0 ≤ p ≤ pmax,

(1)
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where the SINR value at the k-th receiver is

SINRk =
gkkpk

ηk +
∑
j �=k

gkjpj
;

the second stage minimizes the total transmission power required to

support these admitted links:

min
p

∑
k∈S0

pk

s.t. SINRk ≥ γk, 0 ≤ pk ≤ pmax
k , k ∈ S0,

(2)

where S0 is the maximum admissible set for the problem (1).

3. A NEW LINEAR PROGRAMMING DEFLATION
ALGORITHM

Similar to [1], we develop a new LPD algorithm for the joint control

problem (1) and (2) in this section. We first define some notations.

Let us denote

c =

(
γ1η1

g11pmax
1

,
γ2η2

g22pmax
2

, · · · , γKηK
gKKpmax

K

)T

> 0, (3)

define a matrix A with its (k, j)-th entry

akj =

⎧⎨
⎩

γkgkjp
max
j

gkkpmax
k

, if k �= j,

0, if k = j.
(4)

Denote B = I−A, and let q = (q1, q2, · · · , qK)T with

qk = pk/p
max
k , ∀ k ∈ K.

Then the constraints in (1) can be equivalently rewritten as{
(Bq− c)k ≥ 0, ∀ k ∈ S ⊆ K,

0 ≤ q ≤ e.
(5)

In particular, link k is supported at its SINR level (SINRk ≥ γk) if

and only if (Bq− c)k ≥ 0.

3.1. �0-minimization reformulation

Lemma 3.1 (Balancing Lemma [5]) Suppose there exists a vector
q̃ ≥ 0 such that q̃ ≥ Aq̃+ c, where A and c are defined in (4) and
(3). Then, there exists a vector q̄ satisfying c ≤ q̄ ≤ q̃, q̄ = Aq̄+c,

and the vector q̄ solves problem

min
q

eTq

s.t. q ≥ Aq+ c, q ≥ 0.

Based on Lemma 3.1, we can reformulate the two-stage joint

power and admission control problem (1) and (2) as a single-stage

sparse optimization problem

min
x,q

‖x‖0 + α eTq

s.t. x = Bq− c, 0 ≤ q ≤ e,
(6)

where 0 < α < 1/|K| is a constant.

Theorem 3.1 The optimal value of problem (1) is M if and only if
‖x∗‖0 = K −M, where (x∗,q∗) is the solution to problem (6).

Proof: We first show that the optimal value of problem (1) is M if

and only if the minimum value of the following problem

min
x,q

‖x‖0
s.t. x = Bq− c, 0 ≤ q ≤ e

(7)

is K −M.

Let us first show the “if” direction. Suppose that the optimal

value of (7) is K − M and (x̃, q̃) is an optimal solution. Then

‖x̃‖0 = K −M , implying x̃I = 0 for some index set I ⊆ K with

|I| = M . Since x̃I = BI q̃−cI = 0, it follows from the definition

of B and c that SINRk = γk for all k ∈ I. Thus, all links in I are

supported at their target SINR levels, implying that the optimal value

of (1) is at least M .

We now show the “only if” direction. Suppose M links can

be supported in (1), we know from Lemma 3.1 that there exists a

feasible q̄ such that M components of x̄ = Bq̄− c are zero; hence

the optimal value of problem (7) is at most K−M . This establishes

the equivalence between (1) and (7).

Now denote (x∗,q∗) and (x̃, q̃) to be the optimal solutions to

problems (6) and (7), respectively. Since (x∗,q∗) is feasible for

problem (7), it is easy to see that ‖x̃‖0 ≤ ‖x∗‖0. We also conclude

that ‖x∗‖0 ≤ ‖x̃‖0. Otherwise, if ‖x∗‖0 ≥ ‖x̃‖0 + 1, we can get

from this and the fact that α eTq < 1 for any 0 ≤ q ≤ e that

‖x∗‖0 + α eTq∗ ≥ ‖x∗‖0 ≥ ‖x̃‖0 + 1 > ‖x̃‖0 + α eT q̃,

which is a contradiction to the optimality of (x∗,q∗). Thus we must

have ‖x∗‖0 ≤ ‖x̃‖0 and hence ‖x∗‖0 = ‖x̃‖0. This completes our

proof. Q.E.D.
From the above proof, we see that problem (6) can serve the

same role as (7) in finding the maximum admissible set for problem

(1) while minimizing the total power required to support these links.

Indeed, if there are more than one maximum admissible set (i.e.,

the solution for (1) is not unique), the formulation (6) is capable of

picking the one with minimum total transmission power.

As a whole, the reformulation (6) takes both admission control

and power control into consideration. The first term in the objective

function of (6) can be regarded as the admission control term since

the more zero components x has, the more links will be supported.

The second term is the power control term. The parameter α is used

to balance the admission control term ‖x‖0 and the power control

term eTq. In general, a small value of α is preferable since it gives

priority to maximizing the number of supported links. The choice of

α will be discussed later.

3.2. Linear programming relaxation

Since �0-optimization problem (6) is still NP-hard, it is natural to

consider its �1-convex relaxation

min
x,q

‖x‖1 + α eTq

s.t. x = Bq− c, 0 ≤ q ≤ e.
(8)
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Denote K+= { k | x̃k > 0 }, K== { k | x̃k = 0 }, and

K− ={ k | x̃k < 0 }, where (x̃, q̃) is the solution to problem

(8). We claim |K+| = 0. Assume the contrary that |K+| ≥ 1. Then

by Lemma 3.1, we can appropriately reduce the power of links in

K+ ∪ K= so that both the first term and the second term in the

objective of (8) are strictly decreased. Therefore, the �1-relaxation

problem (8) is equivalent to the following linear program

min
q

eT (c−Bq) + α eTq

s.t. c−Bq ≥ 0, 0 ≤ q ≤ e.
(9)

Notice that the LPD algorithm in [1] is also based on the LP

relaxation. However, the LP approximation (9) and the one in [1]

are different. For instance, the reversed SINR constraints make LP

(9) always feasible (q = 0 is one feasible solution); while some

extra parameters need to be introduced to make LP in [1] feasible.

In addition, the auxiliary admission variables double the number of

unknowns in [1], which makes the number of the unknown variables

in their LP twice as large as ours.

Define qek = (c−Bq)k , ∀ k ∈ K. This quantity measures the

excess transmission power [1] that the transmitter of link k needs in

order to be served with its SINR target, assuming other links keep

their transmission powers unchanged. Therefore, (9) actually mini-

mizes a weighted sum of the total excess transmission power and the

total transmission power. With an appropriate choice of parameter

α, linear program (9) enjoys a nice “never-over-removal” property.

Theorem 3.2 Assume that there exists some vector q̄ such that 0 ≤
q̄ ≤ e and Bq̄ = c. Then, the matrix B must be invertible and there
holds

α∗ := 1/max {z} > 0, (10)

where z satisfies BT z = e. Furthermore, the vector q̄ solves linear
program (9) provided that α satisfies 0 ≤ α ≤ α∗.

We give an outline proof of Theorem 3.2. According to [2], if there

exists some vector q̄ satisfying 0 ≤ q̄ ≤ e and Bq̄ = c, then

ρ(A) < 1, which further implies (BT )−1e > 0. The second part of

Theorem 3.2 can be shown by checking the KKT condition of (9).

Combining Theorems 3.1 and 3.2, we can provide the following

reasonable choice for the parameter α in (9),

α =

{
c/|K|, if ρ(A) ≥ 1,

min{c/|K|, α∗}, if ρ(A) < 1,
(11)

where c < 1 is a constant and α∗ is given in (10).

It is evident that problem (9) is not equivalent to problem (6).

Nevertheless, the solution to (9) can provide us some insight into

problem (6). By solving (9) with α given in (11), we know whether

all links in the network can be simultaneously supported or not s-

ince the solution q satisfies Bq = c if and only if all links can be

supported simultaneously. More importantly, having obtained the

solution of (9), we can use the efficient removal strategy in [1], i.e.,

drop link k0 with

k0 = argmax
k∈K

{∑
j∈K

ajkq
e
k +

∑
j∈K

akjq
e
j

}
. (12)

3.3. A necessary condition

We now derive a necessary condition for all links in the network to

be simultaneously supportable. Suppose that all links can be simul-

taneously served. Then there exists a vector q such that 0 ≤ q ≤ e

and

Bq = (I−A)q = c. (13)

Hence, q = Aq+ c ≥ c. Denote μ = BT e, μ+ = max {μ,0} ,
and μ− = max {−μ,0}. It is obvious that μ = μ+ − μ−. Mul-

tiplying eT from both sides of (13), we get that (μ+ − μ−)
T q =

eT c. Moreover, we can obtain

μT
+e ≥ μT

+q = μT
−q+ eT c ≥ (μ− + e)T c,

where the first inequality is due to q ≤ e and the last one is due to

q ≥ c. Therefore, the condition

μT
+e− (μ− + e)T c ≥ 0 (14)

is necessary for all links in the network to be simultaneously sup-

ported.

Condition (14) allows us to iteratively remove strong interfering

links until it becomes true. In particular, we drop the link

k0 = argmax
k∈K

{∑
j∈K

akj +
∑
j∈K

ajk + ck

}
. (15)

Assuming q = e, the above operation can be interpreted as remov-

ing the link with the largest interference plus noise footprint in the

network.

3.4. A new liner programming deflation algorithm

The basic idea of the proposed NLPD algorithm is to solve linear

program (9) under necessary condition (14) and check whether al-

l links are supported or not; if not, remove a link (mathematically,

delete the corresponding row and column of B and the correspond-

ing entry of c) from the network, and solve a reduced linear program

(9) again until all the remaining links are supported.

A New Linear Programming Deflation (NLPD) Algorithm
Step 1. Initialization: Input data (B, c) .

Step 2. Preprocessing: Remove link k0 iteratively according to

(15) until condition (14) holds true.

Step 3. Power control: Compute parameter α by (11) and solve

linear program (9); check whether all links are supported: if yes,

terminate the algorithm; else go to Step 4.

Step 4. Admission control: Remove link k0 according to (12), set

K = K/ {k0} , and go to Step 3.

We compare the proposed NLPD algorithm and the LPD algo-

rithm in [1] in terms of the computational complexity needed to drop

one link from the network. Since both require solving a linear pro-

gram, their asymptotic complexities are both equal to O
(|K|3.5),

although the LPD algorithm solves a LP with twice as many vari-

ables. By comparison, the Algorithm II-B in [2] has a complexity of

O(|K|4), since it needs to solve |K| eigenvalue problems to check

whether all links in the network can be supported.
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Fig. 1. Percentage of optimality versus the number of total links.

4. NUMERICAL SIMULATIONS

In our numerical simulations, we generate the channel parameters in

the same way as in [1], i.e., each transmitter’s location obeys the uni-

form distribution over a 2 Km × 2 Km square and the location of its

corresponding receiver is uniformly generated in a disc with radius

400 m; channel gains are given by gkj = 1/d4kj (∀ k, j ∈ K),

where dkj is the Euclidean distance from the link of transmitter

j to the link of receiver k. Each link’s SINR target is set to be

γk = 2 dB (∀ k ∈ K) and the noise power is set to be ηk =

−60 dBm (∀ k ∈ K). The power budget of the link of transmit-

ter k is pmax
k = 4pmin

k (∀ k ∈ K), where pmin
k is the minimum

power needed for link k to meet its SINR requirement without any

interference from other links.

All figures are averaged over 200 Monte-Carlo runs. The pa-

rameter c in (11) is set to be 0.999. The number of supported links,

total transmission power, and CPU time are employed as the metric

to compare different algorithms, including the LPD algorithm in [1],

the Algorithm II-B in [2], the GRN-DCPC algorithm in [3], and the

proposed NLPD algorithm. In each case, the global optimal solution

obtained by “brute force” enumeration is used as the benchmark.

The vertical axis in Fig. 1 shows the average percentage of glob-

al optimality achieved by different algorithms. Figs. 1, 2, and 3 in-

dicate that the NLPD algorithm can support more links with less

transmission power, and does so with substantially less CPU time

than the existing algorithms (except for the GRN-DCPC algorithm).

As shown in Fig. 3, the GRN-DCPC algorithm transmits the least

power among the tested algorithms. This is because the GRN-DCPC

algorithm supports the least number of links (Fig. 1).

5. CONCLUSIONS

In this paper, we have developed a new LP-approximation based al-

gorithm for the joint power and admission control problem. Numer-

ical simulations show the proposed algorithm outperforms the ex-

isting approaches. This performance improvement is a result of the

new LP reformulation (9) and the use of necessary condition (14).
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