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ABSTRACT

We propose a distributed, decentralized algorithm for solving
separable optimization problems over a connected network of com-
pute nodes. In a separable problem, each node has its own private
function and its own private constraint set. Private means that no
other node has access to it. The goal is to minimize the sum of
all nodes’ private functions, constraining the solution to be in the
intersection of all the private sets. Our algorithm is based on the
alternating direction method of multipliers (ADMM) and requires
a coloring of the network to be available beforehand. We perform
numerical experiments of the algorithm, applying it to compressed
sensing problems. These show that the proposed algorithm requires
in general less iterations, and hence less communication between
nodes, than previous algorithms to achieve a given accuracy.

Index Terms— Distributed optimization, compressed sensing,
basis pursuit, network optimization

1. INTRODUCTION

The interest in distributed processing methods has increased signif-
icantly over the last years. At least two scenarios contributed to
this: the emergence of sensor networks that generate and process dis-
tributed data, and the increasing need for processing large amounts
of data on large scale, distributed computing platforms. Since many
data processing algorithms are based on optimization, there is a need
for new, distributed optimization algorithms.

In this paper we consider separable optimization problems. A
separable optimization problem has the form

minimize f1(x) + f2(x) + · · ·+ fP (x)
subject to x ∈ X1 ∩X2 ∩ · · · ∩XP ,

(1)

where the minimization is with respect to (w.r.t.) x ∈ R
n. We

propose an algorithm for solving (1) in a distributed way. By dis-
tributed we mean that, given a network with P nodes, we associate
with node p a function fp and a setXp and require these to be private
to node p. This means that no other node has access to fp or Xp at
any time during the algorithm. We make some assumptions on the
functions fp, on the sets Xp, and on the given network.

Assumption 1. Each function fp : Rn −→ R is convex, and each
set Xp ⊂ R

n is convex. Also, ∩P
p=1Xp �= ∅.
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Assumption 2. The given network, or graph, is connected and its
topology does not vary with time.

Assumption 3. A coloring of the graph is available.

While Assumptions 1 and 2 are standard in algorithms solv-
ing (1), Assumption 3 is not as common, but is used many times at
lower implementation levels for avoiding packet collisions. A col-
oring of a graph is an assignment of numbers, which we call colors,
to each node of that graph such that no neighboring nodes have the
same number.

Our algorithm is novel and based on the alternating direction of
multipliers [1, §3.4] (ADMM). It is fully decentralized in the sense
that it uses no special or central node. We present experimental re-
sults of our algorithm applied to compressed sensing (CS) [2] prob-
lems, which demonstrate that our algorithm requires in general less
communication than its competitors.

Applications. There are many inherently distributed problems
in control and signal processing that can be written as (1). Examples
include: projected consensus [3], resource allocation problems [4],
cognitive radio [5], and distributed support vector machines [6].

Here, we apply our algorithm to solve two CS problems that are
essential for the reconstruction of an acquired/compressed signal.
These are the Basis Pursuit (BP) [2]

minimize ‖x‖1
subject to Ax = b

(2)

and the Basis Pursuit De-Noising (BPDN) [7]

minimize 1
2
‖Ax− b‖2 + β‖x‖1 ,

x
(3)

where the variable in both problems is x ∈ R
n, and the matrix A ∈

R
m×n and the vector b ∈ R

m are given. We consider A and b

to be partitioned by rows, i.e., A =
[
A�

1 · · · A�
P

]�
and b =

[
b�1 · · · b�P

]�
, where Ap ∈ R

mp×n and bp ∈ R
mp , with m1 +

· · · + mP = m. We assume Ap and bp are known by node p
only, but the total number of nodes P and the parameter β in (3)
are known by all nodes. Hence, (2) can be written as (1) by set-
ting fp(x) =

1
P
‖x‖1 and Xp = {x : Apx = bp}. Similarly, (3) is

written as (1) doing fp(x) = 1
2
‖Apx−bp‖

2+ β

P
‖x‖1 andXp = R

n.
In CS, solving (2) and (3) is a required step to reconstruct the sig-
nal of interest from the acquired/compressed signal b, respectively,
in noiseless and noisy settings. And, although there is some liter-
ature about the properties of distributed CS (e.g. [2]), the problem
of distributed reconstruction has not yet been studied much. There
are several applications for distributed CS reconstruction including
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geographical modeling and healthcare [2], or processing wideband
signals captured by narrowband antennas [8].

Related work. Problem (1) is closely related to decomposition
methods [4], where subgradient methods are very popular [3]. How-
ever, in spite of their nice convergence properties (e.g., noise robust-
ness), they are rather slow. Other distributed algorithms solving (1)
include the method of multipliers concatenated with the nonlinear
Gauss-Seidel method [9] or with the diagonal quadratic approxi-
mation [10], a double-looped algorithm using Nesterov’s method in
both loops [8], and an algorithm called D-Lasso [5] that is, as ours,
based on ADMM. In [11], we compared a particular case, namely
BP, of the proposed algorithm with all these algorithms and con-
cluded that D-Lasso is the only truly competitor. Hence, in section 3,
we only compare our algorithm with D-Lasso. The distributed ver-
sion of ADMM that has been proposed in [12] requires a central
node; our algorithm is completely decentralized.

Contributions. We propose a new algorithm for solving sepa-
rable optimization problems (1) in a distributed way. This algorithm
extends our preliminary work [11], where we proposed an algorithm
for solving (2) specifically. Extensive experiments for (2) and (3)
indicate that our algorithm requires in almost all scenarios less com-
munications than previous algorithms. We believe this fact can have
a significant impact on applications.

2. PROPOSED METHOD

We assume a network (undirected graph) with P nodes and E edges
and represent its graph with G = (V, E), where V = {1, . . . , P}
is the set of nodes and E = {. . . , (i, j), . . .} is the set of edges. A
link (i, j) ∈ E means that nodes i and j can communicate. The
set Np represents the set of neighbors of node p and Dp := |Np|
its degree. A prerequisite for our algorithm is a coloring scheme [1],
such that every pair of adjacent nodes have different colors. The
minimum number of colors graph G requires is represented by χ(G).

The algorithm we propose is only proven to converge for graphs
such that χ(G) = 2, called bipartite graphs (e.g., a grid graph). Al-
though we have no proof of convergence for graphs with χ(G) > 2,
our algorithm never failed to converge in any of our simulations for
that type of graphs.

Algorithm for bipartite graphs. We present the algorithm for
bipartite graphs since it is simpler, and once understood, its general-
ization to graphs with χ(G) > 2 is straightforward. Assume that G
has two colors, 1 and 2, and represent the nodes with color i in the
set Ci, i = 1, 2. Also assume, without loss of generality, that nodes
numbered from 1 to |C1| are in C1 and the remaining are in C2.

In problem (1), all nodes have to agree on a solution x�. Due
to the distributed nature of the problem, we replicate a copy of the
variable x throughout all the nodes. The copy in node p is denoted
with xp ∈ R

n. To guarantee equivalence to (1), we have to con-
strain all these copies to be equal, for example requiring xi = xj

for all (i, j) ∈ E . Let B ∈ R
P×E be the node-arc incidence matrix

of the graph, i.e., a matrix where each column represents the (i, j)th
edge and has −1 and 1 in its ith and jth entries, respectively. The
remaining entries have zeros. Then, the constraint xi = xj , for
all (i, j) ∈ E is written more compactly as (B� ⊗ In)x̄ = 0,
where ⊗ is the Kronecker product, In is the identity matrix in R

n,
and x̄ = (x1, . . . , xP ) ∈ (Rn)P . Therefore, (1) is equivalent to

minimize
∑P

p=1 fp(xp)

subject to xp ∈ Xp , p = 1, . . . , P
(B� ⊗ In)x̄ = 0 ,

(4)

with variable x̄. Due to our numbering scheme, we can partition B

into
[
B�

1 B�
2

]�
and rewrite (4) as

minimize
∑

p∈C1
fp(xp) +

∑
p∈C2

fp(xp)
subject to xp ∈ Xp , p = 1, . . . , P

(B�
1 ⊗ In)x̄1 + (B�

2 ⊗ In)x̄2 = 0 ,
(5)

where x̄ = (x̄1, x̄2) ∈ R
c1 × R

c2 , and ci = |Ci|, i = 1, 2. Now we
apply the alternating direction method of multipliers [1] (ADMM)
to problem (5). Consider the augmented Lagrangian

L(x̄1, x̄2;λ) =
∑

p∈C1

fp(xp) +
∑

p∈C2

fp(xp) + φ(x̄1, B1; λ)

+ φ(x̄2, B2;λ) + 2x̄�
1 (B1B

�
2 ⊗ In)x̄2 , (6)

where φ(x̄i, Bi;λ) = λ�(B�
i ⊗ In)x̄i + ρ

2
‖(B�

i ⊗ In)x̄i‖
2 ,

for i = 1, 2, and ρ > 0 is a predefined parameter. ADMM is an it-
erative algorithm which, at iteration k, minimizes L(x̄1, x̄

(k)
2 ; λ(k))

w.r.t. x̄1, finding x̄
(k+1)
1 ; then, minimizes L(x̄

(k+1)
1 , x̄2; λ

(k))

w.r.t. x̄2, finding x̄
(k+1)
2 ; and finally, updates the dual variable λ =

(. . . , λij , . . .) ∈ (Rn)E as λ(k+1) = λ(k) + ρ((B�
1 ⊗ In)x̄

(k+1)
1 +

(B�
2 ⊗ In)x̄

(k+1)
2 ). It can be shown that each minimization step

decomposes into several optimization problems, one for each node
in C1 or C2, whether the minimization is w.r.t. x̄1 or x̄2, respec-
tively. After each minimization step, the nodes transmit their
estimate of x� to their neighbors (which, of course, have a dif-
ferent color). It can also be shown that the dual variable λ does
not need to be updated directly: node p can update the auxiliary
variable γ

(k)
p =

∑
j∈Np

sign(j − p)λ
(k)
pj instead. The result is

the following algorithm, which we name D-ADMM, where the ‘D’
comes from “distributed.”

Algorithm 1 D-ADMM-I for bipartite networks

Initialization: for all p ∈ V , set γ(1)
p = x

(1)
p = 0 and k = 1

1: repeat
2: for all p ∈ C1 [in parallel] do
3: Set v(k)p = γ

(k)
p − ρ

∑
j∈Np

x
(k)
j and find

x(k+1)
p = argmin fp(xp) + v

(k)
p

�

xp +
Dpρ

2
‖xp‖

2

s.t. xp ∈ Xp

4: Send x
(k+1)
p toNp

5: end for
6: Repeat 2-5 for all p ∈ C2, replacing x

(k)
j by x

(k+1)
j in v

(k)
p

7: for all p ∈ V [in parallel] do

γ
(k+1)
p = γ

(k)
p + ρ

∑
j∈Np

(x
(k+1)
p − x

(k+1)
j )

8: end for
9: k ← k + 1

10: until some stopping criterion is met

It can be seen that nodes with different colors cannot operate in
parallel, but all the nodes with the same color operate in parallel. At
each iteration, each node solves the optimization problem in step 3,
which depends only on local data (function fp and the set Xp), but
requires knowledge of the neighbors’ estimates. Those estimates are
communicated in step 4. After step 6 is executed, all nodes have
performed one minimization step and have sent the respective solu-
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tion to all their neighbors. Next, in step 7, they update the auxiliary
variable γp in parallel. Regarding the convergence of Algorithm 1,
the following theorem holds.

Theorem 1 ([11]). For each p = 1, . . . , P , the sequence {x(k)
p }

produced by Algorithm 1 converges to a solution of (1).

The proof consists of showing that (5) satisfies the conditions
of the theorem that establishes the convergence of ADMM [1]. In
particular, the matrices (B�

i ⊗ In), i = 1, 2 have to be full column-
rank, but this follows from well known properties of the matrix B.

Algorithm for general graphs. The generalization of Algo-
rithm 1 to graphs colored with more than two colors (in particular,
χ(G) > 2) is now straightforward: in each iteration, steps 2–5 are
repeated for all colors. Unfortunately, Theorem 1 no longer applies
because the proof of convergence of ADMM [1] cannot be easily
generalized to the case when the variable is partitioned into more
than two blocks. However, empirical evidence shown in next section
suggests that the conclusions of the theorem may still hold.

3. EXPERIMENTAL RESULTS

We now present results from the simulations of Algorithm 1 solv-
ing (2) and (3). As mentioned, we only compare our algorithm with
D-Lasso, since it is the only competitive one. In the case of (2), a
comparison with other algorithms can found in [11]. In particular,
Algorithm 1 applied to (2) always outperformed any other algorithm
for all the considered networks and data types.

Performance measure. We will use the number of communi-
cation steps to assess the performance of an algorithm. Communi-
cating is the most energy-consuming task in sensor networks and the
runtime bottleneck in computer clusters. Therefore, the less com-
munications an algorithm uses, the more energy-efficient or faster
that algorithm can be. D-ADMM and D-Lasso have a very simi-
lar structure: both consist of a single loop where in each iteration
each node solves the optimization problem in step 3 of Algorithm 1,
and communicates its solution to all its neighbors. Thus, one itera-
tion of both algorithms is comparable since they perform the same
computations and transmit the same amount of information across
the nodes. To emphasize that we are interested in the number of
communications, we will use the term communication step to de-
note an iteration of either D-ADMM or D-Lasso. Note that, given a
network with E edges, 2E multiplied by the number of communica-
tion steps gives the total number of communications in the network.
Also, note that while D-ADMM operates asynchronously, D-Lasso
can perform synchronously. Thus, in environments where synchro-
nism is allowed, D-Lasso can have smaller execution times in spite
of using more communications. We note, however, that such envi-
ronments are rare in practice; for example, in wireless networks the
packet collision problem prevents synchronism.

Experimental setup. The data we used for simulating the al-
gorithms comes from CS. In one case, we generate our own data:
each entry in the matrix A ∈ R

500×2000 was drawn from an i.i.d.
Gaussian distribution with zero mean and variance 1/500. The vec-
tor b was generated from multiplying A by a vector with 80 nonzero
random entries, located at random places. In the other case, we
used data provided by the Sparco toolbox [13], namely problem 7
(A ∈ R

600×2560). Regarding the networks, we generated 7 different
networks with P = 10 nodes according to a random model, shown
in Table 1. A description of the parameters of these models can be
found, e.g., in [11]. We mention that the only network that was not
generated by a random model was the Lattice one: it is just a 2-
dimensional grid with dimensions 2× 5, thus it is bipartite. Hence,

Table 1. Network models for the experiments.

Network number Model Parameters

1 Erdős-Rényi p = 0.25

2 Erdős-Rényi p = 0.75

3 Watts-Strogatz (n, p) = (4, 0.6)

4 Watts-Strogatz (n, p) = (2, 0.8)

5 Barabasi-Albert —————–

6 Geometric d = 0.75

7 Lattice —————–

Network number

Communication steps

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5 6 7

D-ADMM: Gaussian

D-Lasso: Gaussian

D-ADMM: Id 7

D-Lasso: Id 7

Fig. 1. BP results for Gaussian and Sparco (Id 7) data.

this is the only network for which D-ADMM is proven to converge.
For the other networks, although there is not a guarantee of conver-
gence, D-ADMM always converged.

Both D-ADMM and D-Lasso are augmented Lagrangian-based
algorithms. Therefore, they depend on a parameter ρ (see, e.g., (6)),
which is chosen beforehand. It is known that the performance of
augmented Lagrangian-based algorithms depends strongly on the
choice of ρ. To mitigate that dependence, we designed our exper-
iments the following way: given a network and a dataset, we run
both D-ADMM and D-Lasso 5 times, where each run has a differ-
ent value for ρ, chosen from the set {10−3, 10−2, 10−1, 1, 10}. And
we always choose the best result, i.e., the one that leads to the least
number of communication steps. In each run, the algorithms stop
whenever they achieve a 10−3% accuracy at an arbitrary node, i.e.,
‖x(k)

p − x�‖/‖x�‖ ≤ 10−5 for an arbitrary node p, or when the
maximum number of iterations 103 is reached. The solution x� for
BP or BPDN is computed beforehand using centralized algorithms.

Results. Figs. 1 and 2 show the results of our simulations for
problems (2) (BP) and (3) (BPDN), respectively. In Fig. 1 we repre-
sent the number of communication steps as a function of network
number (c.f. Table 1). There, we see that D-ADMM always re-
quired less communication steps than D-Lasso to achieve 10−3%
of accuracy, for both types of data. The optimal values for ρ were
always 10−2, 10−1, or 1, for both algorithms.

In Figs. 2(a) and 2(b) we present the same type of plots but for
BPDN, for Gaussian and for Sparco data, respectively. In contrast
with what happened for BP, here there are two cases where D-Lasso
required less communication steps than D-ADMM: for networks 4
and 7 under Gaussian data. For illustration, we represent in Figs. 2(c)
and 2(d) how the error evolved along the iterations for two particular
cases: one for which D-ADMM required less communication steps
than D-Lasso (Gaussian data, network 3), and another for which it
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Network number

(a) Gaussian data

Communication steps
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(b) Sparco data: Id 7
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(c) Error evolution for network 3

Relative error: ‖x(k)
p − x�‖/‖x�‖
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(d) Error evolution for network 7

Relative error: ‖x(k)
p − x�‖/‖x�‖
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Fig. 2. BPDN results for Gaussian (a) and Sparco (b) data. Relative error along the iterations for Gaussian data: networks 3 (c) and 7 (d).

required more communication steps than D-Lasso (Gaussian data,
network 7). In Fig. 2(c) we see that D-ADMM required uniformly
less communication steps than D-Lasso to achieve any accuraccy be-
tween 10−1 and 10−5. For network 7, however, this only happened
until an accuracy of 10−4, value after which D-Lasso started requir-
ing less communication steps. This explains Fig. 2(a).

4. CONCLUSIONS

We proposed a distributed algorithm for solving separable optimiza-
tion problems over a network of nodes. Each node has a private func-
tion that wants to minimize, and a private constraint set. All nodes
reach a solution together by exchanging solution estimates in each
iteration. By assuming that a coloring scheme is available before-
hand, we are able to apply ADMM to our problem formulation. The
resulting algorithm requires, in general, less communications than
the state-of-the-art algorithms, as shown by numerical simulations
for compressed sensing reconstruction problems.
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