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ABSTRACT

Consider a wireless sensor network with N sensor nodes measur-
ing data which are correlated temporally or spatially. We consider
the problem of reconstructing the original data by only transmitting
M � N sensor readings while guaranteeing that the reconstruction
error is small. Assuming the original signal is “smooth” with respect
to the network topology, our approach is to gather measurements
from a random subset of nodes and then interpolate with respect to
the graph Laplacian eigenbasis, leveraging ideas from compressed
sensing. We propose algorithms for both temporally and spatially
correlated signals, and the performance of these algorithms is ver-
ified using both synthesized data and real world data. Significant
savings are made in terms of energy resources, bandwidth, and query
latency.

Index Terms— Distributed estimation, graph Fourier transform,
compressed sensing, wireless sensor networks.

1. INTRODUCTION

For many wireless sensor network (WSN) applications, the signals
measured are likely to be correlated either spatially or temporally;
i.e., we can find an appropriate transform domain where the signals
are compressible. WSNs are characterized by having simple battery-
powered wireless nodes with limited energy and communication re-
sources. In order to reduce power consumption and conserve band-
width (or query latency), it is desirable to apply the philosophy of
compressed sensing whereby we directly gather a reduced number
of informative measurements rather than gathering a large number
of redundant measurements.

When describing a N -dimensional signal in terms of a given
basis transformation (e.g., the Fourier transform), if we are given a
budget of γ � N values to represent the signal, then the best choice
is to keep the γ transform coefficients with largest magnitude. Di-
rectly computing a basis transformation and locating the γ largest
transform coefficients in a distributed manner is non-trivial and con-
sumes more energy and bandwidth resources than simply sending
the raw data from each sensor to a fusion center.

One promising solution to the above issue leverages develop-
ments in the area of compressed sensing (CS) [1, 2]. CS theory
shows that, when the signal is sparse or compressible in the trans-
form domain, we can utilize M � N random projections of the
data to estimate the original signal with an error very close to that of
the optimal approximation using the γ largest transform coefficients.
Many efforts [3, 4] have been made along this line of research. How-
ever, the conventional CS sensing matrices like i.i.d. Gaussian or
Bernoulli are expensive to compute and each random measurement
requires cooperation and communications among all N sensors,
which results in non-trivial power consumption. Wang et al. [5]

solve this problem by proposing sparse random sensing matrices,
which significantly reduces the communication overhead.

In contrast to previous work, we focus on the particular case of
estimating signals which are smooth with respect to a graph. In this
paper, we propose a technique called Graph Spectral Compressed
Sensing (GSCS). We show that if the sampled signals are corre-
lated spatially or temporally, we can construct an underlying graph
such that the signal is compressible in a corresponding transform do-
main. More specifically, if we project signals onto the correspond-
ing Graph Fourier Transform (GFT) basis [6], the coefficients are
linearly compressible. In this setting, only a small random portion
of the sensor nodes need to be activated to sample and transmit mea-
surements. Consequently, both power consumption, bandwidth us-
age, and latency are reduced.

Our main contribution is two fold. First, to the best of our
knowledge, most of the previous CS literature [4] considering data
compression or field estimation assumes that the signals sampled
are compressible in certain orthogonal domains (e.g., 2-d wavelets).
They assume the sensor nodes are in a regular structure, e.g., 2-d
grid. However, in real world applications, sensor nodes may not al-
ways exhibit such a rigid structure. The proposed method overcomes
this problem by exploiting the GFT, which is suitable for networks
with general topology.

Second, much of the existing literature [3, 4] consider dense
noisy random matrices as the sensing matrix. As mentioned above,
those matrices have two main disadvantages. Not only does every
node have to randomly generate the entries of the sensing matrix, but
also the implementation of noisy projections requires more coopera-
tions and communications among sensors. The method we propose
can successfully reduce both the energy consumption and query la-
tency under the scheme of CS.

The rest of the paper is organized as follows: In Section 2, the
basic idea of GSCS is introduced. In Section 3, detailed data gath-
ering algorithms for WSNs with spatially and temporally correlated
signals are proposed. In Section 4, both synthesized and real world
data are utilized to verify the performance of our approach, and we
conclude in Section 5.

2. GRAPH SPECTRAL COMPRESSED SENSING

The first step of GSCS is to generate a deterministic orthogonal
transform basis where the signal is compressible. Here we utilize
the Graph Fourier Transform.

2.1. The Graph Fourier Transform

Graph theory plays an important role in analyzing networks since
networks can be well modeled by graphs. Two crucial tools for
studying graphs are the adjacency and Laplacian matrices, which en-
code the topology of a graph. For an undirected, unweighted graph
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G = (V,E), in which E and V denotes the sets of edges and nodes
respectively. The adjacency matrix A is an N × N matrix, where
N = |V | is the number of nodes, with entries Ai,j ∈ {0, 1}, where
Ai,j = 1 if there is an edge between node i and node j, and Ai,j = 0
otherwise. The degree of node i, denoted by di, is the number of
nodes connected to i. The degree matrix D is a diagonal matrix with
entries Di,i = di. The graph Laplacian is then L = D −A.

Let λ0 ≤ λ1 ≤ · · · ,≤ λN−1 denote the eigenvalues of L, with
corresponding eigenvectors ui, i = 0, 1, · · · , N − 1. We denote the
Laplacian eigenbasis of the graph G by U = [u0, u1, · · · , uN−1].
From the discussion of [6], we know that the Laplacian eigenba-
sis can be regarded as a sort-of “Fourier transform” for signals sup-
ported on the nodes of G, and so we refer to U as the Graph Fourier
Transform matrix. A signal f ∈ R

V supported on G = (V,E) is
said to be smooth if there exists a positive constant C � λN−1 such
that ‖f‖2G ≤ C‖f‖2, where ‖f‖2G = fTLf . Moreover, a smooth

signal supported on G has GFT coefficients f̂(λi) = 〈f, ui〉 with

linearly decaying behavior; i.e., |f̂(λi)| ≤ Si−(s+1/2) for constants
s, S > 0. As discussed, e.g., in [7], compressible signals can often
be defined by the decaying behavior of the non-linear approximation
error. However, since we are concerned with linearly compressible
signals here, we focus on the following class of signals.

Definition 1. For given s > 0, the set of s-linearly-compressible
signals is defined as: Ls = {f ∈ R

N : εl(γ, f) ≤ Sγ−s, 1 ≤ γ ≤
N,S < ∞}, where εl(γ, f) =

∑N−1
i=γ |f̂(λi)|2 is the γ-term linear

approximation error.

In this paper, we are interested in smooth signals supported on
graphs. In some cases, the graph of interest may be known (e.g.,
the network topology). In other cases (e.g., temporal correlation),
we consider the problem of constructing a graph which is appropri-
ate for compressing the given signal. This problem is studied in [6]:
Given an arbitrary signal x ∈ R

N , we can think of each coordi-
nate of x as value associated with a particular node in a graph. We
can construct the K-Nearest-Neighbor (KNN) graph by connecting
nodes with similar values, and then use its Laplacian eigenbasis U .
It has been shown [6] that with proper choice of K, the number of
neighbors of each node, we can construct an underlying KNN graph
where the signal x is smooth. Equivalently, we are able to find a
graph such that the signal x is linearly compressible in the corre-
sponding GFT basis. In real applications, we may not know the prior
information about which nodes share similar values. However, we
can generate the graph using, e.g., location information if the signal
is spatially correlated or by previous estimates if the signal is tempo-
rally correlated. More detailed information is included in Section 3.

2.2. Compressed Sensing via Graph Fourier Transform Basis

Compressed Sensing [1, 2] is a very useful tool to handle sparse
or compressible signals. Suppose instead of collecting all the co-
efficients of a signal x ∈ R

N , we merely record M inner products
(measurements) of x with M � N pre-selected vectors. This can be
represented as: y = Ψx = ΨUθ = Φθ, where Φ = ΨU is the sens-
ing matrix with dimension M ×N , U is the orthogonal basis where
x is sparse or compressible and θ is the basis expansion coefficients.
If the sensing matrix Φ satisfies certain conditions [1, 2], then we
can reconstruct the original signal by solving the linear program (�1
decoding): min

θ
‖θ‖1 s.t. y = Φθ.

Candès [1] and Rudelson [8] discuss conditions that the structure
of random matrices should satisfy to be valid CS sensing matrices:
(i)The matrix should be orthogonal. (ii)The entries of the normalized

N×N matrix should be uniformly bounded by O( 1√
N
), i.e., the co-

herence of the sensing matrix μ = O( 1√
N
), where μ = max

i,j
|Φi,j |.

By randomly selecting M = O(γ log4 N) rows of such matri-
ces, we can generate valid sensing matrices for CS [8]. The tradi-
tional Discrete Fourier Transform (DFT) basis is clearly a candidate
fit for such criteria. As the GFT is considered the “Fourier” basis for
signals supported on graphs, can the GFT basis be similarly treated
as the DFT basis? It is straightforward to check that the GFT basis
is orthogonal, but the second condition (bounded coherence) cannot
be guaranteed. In order to delve into more details about how the en-
tries of the GFT basis are distributed, we generalize the definition of
coherence as follows:

Definition 2. Define μΦ(T ) = max
i,j

|[ΦT ]i,j | to be the coherence of

the matrix ΦT , where T is a subset of {1, 2, · · · , N} and ΦT is the
submatrix obtained by selecting the columns of Φ corresponding to
T . If T = {1, 2, · · · , N}, then μΦ(T ) is equivalent to μ.

It has been show in [9] that μU (T ) is bounded when UT corre-
sponds to the eigenvectors whose associated eigenvalues are small,
even if the coherence of the whole matrix is not bounded by O( 1√

N
).

Moreover, if we construct a connected symmetric KNN graph by
choosing a small parameter K, where K is the number of neigh-
bors a node should be connected to, λ0, · · · , λi are likely to be
small for i � N and thus we can have bounded μU (T ) where
T = {1, 2, · · · , i}.

Fortunately, the uniformly bounded condition can be relaxed if
we utilize this prior information and the linear compressibility of the
signals supported on graphs. For example, consider a sparse signal
here. If the nonzero entries of the original signal have a fixed support
T and U is the sensing matrix, then the behavior of submatrix UTc

will not affect the recovery process, where T c is the complementary
set of T ; i.e., we merely require μU (T ) = O( 1√

N
). The same con-

clusion can be generalized to linear compressible signals. Moreover,
linear compressible signals can be well approximated by the linear
approximation, i.e., the first γ GFT coefficients will contain most of
the energy of the signal. Thus, we can rely on such prior knowledge
and utilize a simple estimator called oracle estimator. Let Φ = UΩ

denote the sensing matrix, where Ω is a subset of 1, 2, · · · , N and
UΩ is a submatrix generated by selecting the corresponding rows
from Ω. Also let Φγ denote the sub-matrix of Φ containing the first
γ columns. The oracle estimator can be represented as U†

γy where

y = Φθ is the measurement and U†
γ is the Moore-Penrose pseudo

inverse of Uγ . After we obtain θ̂, we can get the estimate x̂ via the

equation x̂ = Uθ̂.

Theorem 2.1. Let x ∈ Ls be an s-linear compressible signal and
Tj = {(j − 1)γ + 1, (j − 1)γ + 2, · · · , jγ − 1}. Let the sensing
matrix be UΩ. If μ(Tj) ≤ C · js−1 for all j = 1, · · · , 	N/γ
 and
some C > 0, and if the number of measurements M = |Ω| obeys
M ≥ Const · γ · ln( γ

δ
) for some δ > 0, then with probability

1 − δ, the estimate x̂ obtained from the oracle estimator satisfies:
1√
2
‖x−xγ‖2 ≤ ‖x− x̂‖2 ≤ ‖x−xγ‖2 +C ·Sγ−sln	N

γ

, where

C =
Cs

√
1+εγ√

1−δγ
and xγ is the γ−term linear approximation.

A detailed proof of this theorem is provided in the technical re-
port [9]. The proof makes use of techniques developed in [7, 10, 11].
The theorem claims that if the entries of the original signal decay
quickly, we can guarantee a stable recovery when the coherence
μ(Tj) keeps increasing for larger j. Actually, we allow μ(Tj) to
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become unbounded if the entries of the original signals supported on
Tj are small. Since the oracle estimator recovers the γ−term linear
approximation of the original signal, the recovery error has a lower
bound.

3. APPLICATION TO WIRELESS SENSOR NETWORKS

3.1. Spatially Correlated Signals

Let x ∈ R
N be the data vector for a WSN with N nodes; i.e., each

entry xi is the data reading from the corresponding sensor node, i.
Here we wish to sample M � N nodes to recover the original sig-
nal x. Assume we have perfect knowledge about where each sensor
node is located. We can utilize the location information to gener-
ate a symmetric KNN graph of the WSN. According to the analysis
in [6], we have to select the parameter K carefully, where K here
is the number of neighbors each node should be connected to. K
should be chosen as small as possible while still keeping the graph
well-connected. After obtaining the underlying graph, we can get
its Laplacian eigenbasis U . We randomly select M � N nodes to
report their data to the sink while the other N−M sensors remain in
a sleep mode. Denote the set of awakened sensors as Ω and y ∈ R

M

as the transmitted measurement vector. Then, we have the measure-
ments y and the sensing matrix UΩ. After the fusion center obtains
the measurement y, i.e., the data readings from M sensor nodes, we
can estimate the original signal x by utilizing the oracle estimator or
conventional �1 decoding.

3.2. Temporally Correlated Signals

Let xt ∈ R
N be the data samples from a WSN at time instant t,

where the network consists of N sensor nodes. The data is collected
via a certain sampling rate at discrete times t = 1, 2, · · · . Here
we propose an online estimation algorithm to iteratively estimate the
readings xt based on previous estimates of xt−1, . . . , x1. We show
that merely sampling a small portion of the sensor nodes at each
iteration, we can still maintain a stable recovery. The general idea of
the algorithm is described as follows:

(1) Assume the central station has already obtained all the esti-
mates x̂t−1, . . . , x̂1 of the previous readings. We calculate the mean
of the r most recent estimates: x̄t =

1
r

∑t−1
k=t−r x̂k.

(2) Next we generate a KNN graph G based on x̄ by following
the principles in the work [6] and obtain its Laplacian matrix U by
taking the eigenvalue decomposition of the Laplacian matrix L of G.

(3) At time t, the WSN randomly collects data from a subset
Ωt of |Ωt| = M � N sensor nodes. At the fusion center, the
received measurements are collected in the M -dimensional vector
yt = UΩtxt.

(4) When the fusion center obtains the current measurement vec-
tor yt, it recovers the current estimates x̂t = Uθ̂ by utilizing the
oracle estimator or conventional �1 decoding.

(5) Set t = t+ 1 and start a new iteration from step 1.

3.3. Power, Latency and Distortion

For a linear compressible signal, the upper bound shows that ‖x −
xγ‖2 ≤ Const·Sγ−s. Combining this with ln	N

γ

 ≤ lnN , we can

see that the MSE D = ‖x− x̂‖2 ≤ Const · lnN ·γ−s. If the signals
decays fast, i.e., s is large, then the distortion will have a small upper
bound. Moreover, if we increase the number of measurement M , a
larger γ could be found to satisfy the condition M ≥ Const ·γ · ln γ
and consequently, the distortion will be reduced. Since the fusion

center has to first receive all M measurements and then start the
recovery process, it will cost the WSN M units of bandwidth and
latency.

Different from the conventional CS paradigm, GSCS is able to
reduce the number of communications for data gathering signifi-
cantly. If we adopt the architecture described in [4] and assuming
the recovery errors are close for GSCS and conventional CS with
the same number of measurements, for a WSN with N nodes, each
sensor has to transmit M times in order to generate the measure-
ment vector y, i.e., the total number of transmissions in the WSN is
MN . However, by exploiting GSCS, we merely require M2 nodes
to transmit their readings, i.e., the total number of transmissions in
the WSN is M2. For a large scale WSN, the reduction of the energy
consumption is huge since M2 � NM1.

4. EXPERIMENTS

4.1. Synthesized Data

Fig.1 shows the performance of GSCS with oracle estimator and Ba-
sis Pursuit (BP), conventional CS via i.i.d. Gaussian random matrix
and sparse random projection [5]. The signal is generated by the
following model: we first generate a 200× 1 Gaussian random vec-
tor x and then scale its nth entry by a factor 1

ns . It is easy to see
that the larger s is, the more compressible the signal will be. In this
experiment, we set s = 2. For oracle estimator, we set the param-
eter γ = round(M

7
) in all the experiments here for simplicity. We

use the BPsolver routine of SparseLab2.11 to solve the �1 recovery
problem. The algorithm is run for 500 trials to get the best, worst
and average performance. It is worth noting that all the Monte Carlo
experiments in this section use a fixed data set with random measure-
ments. From Figure 2, we can see that for a linear 2-compressible
signal, GSCS with the oracle estimator outperforms all the other
methods when M � N . Its performance is only worse than that
of others when M → N . This is easy to understand since the recov-
ery error for oracle estimator has an lower bound. It’s worth noting
that the GSCS with BP performs essentially as well as the Gaussian
sensing matrix, on average.
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Fig. 1. Performance of GSCS with oracle estimator and Basis Pur-
suit (BP), conventional CS via i.i.d. Gaussian random matrix and
sparse random projection. The averaged distortion over 200 trials is
plotted while the best and worst performance is denoted by the error
bar. The number of measurements M is from 9 to 199.

1http://sparselab.stanford.edu/
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4.2. Real world data

In this section, we investigate the performance of GSCS on data
from the California Irrigation Management Information System
(CIMIS)2. This dataset is generated by the weather stations across
the state of California, which are equipped with sensors that measure
solar radiation, temperature, and wind speed, among other variables.
We run GSCS on solar radiation data across multiple sensors and
multiple time points.

Spatially Correlated Signals: First we use the solar radiation
data of one day which contains 135 readings from different weather
stations. Since we know the exact coordinates of all those weather
stations, we can generate a KNN graph based on the geological in-
formation and obtain its GFT basis. The resulting network is shown
in Fig. 2(a), and Fig. 2(b) illustrates that the performance of GSCS
with BP is comparable with that of the conventional Gaussian ran-
dom matrix and sparse random projection while the oracle estimator
works clearly better than all the other methods when M � N . The
distortion is computed for 100 different times and the average dis-
tortion is presented.
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Fig. 2. (a) The K-Nearest-Neighbor graph generated using the loca-
tions of weather stations in California. We set the number of neigh-
bors for this graph K = 7. (b) Performance comparison of GSCS
with oracle estimator and BP, conventional CS via i.i.d. Gaussian
random matrix and sparse random projection. The figure plots dis-
tortion (mean squared error) as a function of the number of measure-
ments, M .

Temporally Correlated Signals: Next we test the GSCS algo-
rithm on temporally correlated signals. The data set is also from
CIMIS. We use 92 daily readings from each of 117 sensor nodes,
corresponding to a period of three months. First we set r = 40 and
let the sensor data of the first 40 days to be fully transmitted to for-
mulate the initial estimated data and obtain its mean of x̄ to generate
the corresponding KNN graph. For the remaining 52 days we exploit
the procedure described in Subsection 3.2 to estimate the original
signals. Figure 3(a) shows how the number of measurements affects
the performance of GSCS. The averaged MSE becomes fairly small
when the number of measurements exceeds 20. The performance
of GSCS with the oracle estimator is comparable to other methods
when M � N . Daily readings might change quickly from the past
and such signals don’t exhibit strict linear compressibility. This is
one disadvantage of the oracle estimator: it requires that signals
strictly conform to the linear compressible model. Figure 3(b) gives
the MSE for each iteration when we randomly activate 40 nodes to
transmit the data. This experiment is run for 100 trials and the aver-
age is plotted. By comparing with the original signals, we find that
the large spikes of the error usually correspond to signals that deviate
from the the day before.

2http://www.cimis.water.ca.gov
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Fig. 3. (a) Performance comparison of GSCS with oracle estima-
tor and BP, conventional CS via i.i.d. Gaussian random matrix and
sparse random projection on temporally correlated data as a function
of number of measurements per day. The distortion is calculated by
averaging over the total 52 daily readings. The parameter K is also
set to 7. (b) Mean square error of each iteration. The number of
measurements is set to 40.

5. CONCLUSION

In this paper, we propose a new technique called Graph Spectral
Compressed Sensing. GSCS utilizes the partial Graph Fourier en-
semble as the sensing matrix for smooth signals supported on graphs.
We introduce two algorithms based on GSCS for WSNs to deal with
temporally or spatially correlated signals. For spatially correlated
signals, GSCS is a general approach for regular or irregularly struc-
tured WSNs. For temporally correlated signals, GSCS provides an
online estimation technique which iteratively learns the underlying
transform domain where the signal is compressible. Both algorithms
exhibit great improvement in saving both the energy consumption
and bandwidth resources (or latency) since GSCS merely requires a
small portion of the whole sensor nodes to sample and transmit the
data,
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