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ABSTRACT

A distributed belief propagation protocol is developed to carry
inference and decoding tasks using wireless sensor networks
with high-dimensional, correlated observations. Statistical
dependencies are modeled using factor graphs. The overall
a-posteriori probability is factored so that its factor graph rep-
resentation can be mapped to the actual communication net-
work. Sum-product message passing updates over the graphi-
cal model can thus be mapped to messages among sensors. As
an application scenario, distributed spectrum sensing is con-
sidered. Simulated tests show that exploiting the correlation
present among sensor observations can considerably improve
sensing performance.

1. INTRODUCTION

In many sensing applications the phenomena under observa-
tion belong to an exponentially-large structured set of hy-
potheses, such as images or coded messages [1, 2]. Large-
scale phenomena can be effectively modeled using probabilis-
tic graphical models whereby statistical dependencies among
variables (pixels, bits) are visualized using links in a graph.
This representation has helped deriving and understanding
simple and effective inference and decoding rules via mes-
sage passing [3]. In distributed set-ups, however, sensors only
obtain local observations (potentially correlated to other sen-
sors’ observations) of the phenomena and thus local message
passing without collaboration from other sensors may per-
form poorly. The objective of this paper is to develop dis-
tributed message-passing algorithms to carry inference and
decoding tasks exploiting multiple sensor observations and
the correlations among them.

Approaches for distributed hypothesis testing problems
using graphical models are presented in [4,5]. However, these
approaches are designed for simple phenomena represented
by a discrete scalar random variable. If the problem dimen-
sion grows, the number of hypotheses grows exponentially
and communication complexity becomes prohibitive. An al-
ternative to these approaches was provided in [1] in the con-
text of distributed decoding, where independence among sen-
sor observations is exploited to derive distributed consensus
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Fig. 1. Sensor network collecting observations.

averaging algorithms that scale linearly with the problem di-
mension. If sensor observations are correlated, however, this
approach is not optimal. Correlated observations modeled via
graphical models have been considered in other centralized
scenarios such as joint decoding-channel estimation problems
[6, 7].

In this work, the overall inference problem will be repre-
sented using two connected graphical models. One represent-
ing the statistical dependencies of the phenomena, and a sec-
ond capturing the dependencies among sensor observations.
The latter coincides with the communication graph, whereas
the former does not have to [8]. The overall graph is re-
expressed so that statistical dependency links can be mapped
to communication links, and thus sum-product message pass-
ing updates over the graphical model correspond to messages
among sensors. Compared to the consensus-type iterative al-
gorithms in [1], distributed belief propagation (BP) converges
in a finite number of iterations, and exploits correlated sensor
observations.

2. SYSTEM MODEL AND PROBLEM STATEMENT

With reference to Fig. 1, consider a WSN consisting of J :=
{1, . . . , J} sensor nodes observing the state of the environ-
ment represented by the V × 1 vector x. Each entry xv is
a random variable (r.v.) belonging to a finite field FQx

of
cardinality Qx representing, e.g., the presence/absence of a
target as will be shown in Section 4. Other examples where
finite-field environmental variables are considered are: infor-
mation symbols [1], pixels of an image observed by multiple
sensors [9], or robotic-generated maps [2].
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Correlation among entries in x is modeled using a pair-
wise factor graph with nodes xv and factors φ(xv) (associated
with node xv) and ψ(xv, xw) (between nodes xv and xw) [3].
The probability mass function (pmf) of x is thus given as

p(x) =
1

Zx

∏
v∈V

φ(xv)
∏

(v,w)∈Ex

ψ(xv, xw) (1)

where Ex is the set of edges connecting entries in x and Zx is
a normalization constant.

Each sensor j ∈ J acquires a V ×1 observation vector yj

from the state of the environmentx. Observations y1, . . . ,yJ

are coupled through the unobserved or hidden random vari-
ables collected in the vector s := [s1, . . . , sJ ]

T , where sj ∈
FQs

. Variables sj can represent the unknown fading channel
state between the symbol x and observation yj [6].

Assuming conditional independence, the probability of
observing y1, . . . ,yJ given x and s is given by

p(y1, ...,yJ |x, s) =

J∏
j=1

p(yj |x, sj) (2)

where p(yj |x, sj) is the per-sensor conditional pdf. In the
absence of memory, (2) can be further written as

p(yj |x, sj) =

V∏
v=1

p(yjv|xv, sj). (3)

In this model different sj are assumed correlated according
to the distance (i.e., connectivity) among sensors. Its pmf
p(s1, . . . , sJ ) is thus assumed factored as

p(s) =
1

Zs

J∏
j=1

α(sj)
∏

(j,i)∈Es

β(sj , si) (4)

where Es corresponds to the set of edges connecting sensors;
α(sj) and β(sj , si) are factor nodes; and Zs is a normaliza-
tion constant. It is worth stressing that unlike Ex, the edge set
Es does correspond to the communication graph of the WSN.
For example, closeby sensors experience the same fading ef-
fects with higher probability than faraway sensors.

Let p(x|y1, . . . ,yJ) denote the probability that the state
of the environment is x given that y1, . . . ,yJ was observed.
Given this model, the problem of interest is to find maximum
a-posteriori probability (APP) of each xv , namely

pv(xv |y1, ...,yJ ) ∝
∑

x∈F
V
Qx

\xv

∑
s∈F

J
Qs

p(y1, ...,yJ |x, s)p(x)p(s)

(5)

where FV
Qx

\xn is the set of vectors x with fixed xv . Note also
that the term p(y1, . . . ,yJ) has been discarded as it does not
depend on x. Finding (5) is challenging because the domains
of x and s are discrete. An approximate solution can be found
via message passing [10] over the factor graph representation
of p(y1, ...,yJ |x, s)p(x)p(s). The algorithm involves pass-
ing messages from variable nodes to factor nodes, and vice
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Fig. 2. Factor graph (scalar field).

versa [3]. Note however that, in general, this message passing
algorithm cannot be efficiently implemented in a distributed
fashion since the factor graph describing p(x) does not coin-
cide with the underlying communication graph. Sensors can-
not attempt to compute (5) locally either, since they only have
access to the local posterior p(yj |x, sj).

3. DISTRIBUTED BELIEF PROPAGATION

In this section, the MAP in (5) is reformulated so that it can be
efficiently computed in a distributed fashion. A simpler sce-
nario assuming a scalar x will be tackled first. This will pro-
vide intuition for the most general case, pursued afterwards.

3.1. Scalar observations

Assume x = x is a scalar, and thus p(yj |x, sj) = p(yj |x, sj)
in (5). The APP problem in (5) then reduces to [cf. (1), (4)]

p(x|y1, ..., yJ )∝
∑

s∈F
J
Qs

J∏
j=1

p(yj |x, sj)p(x)α(sj)
∏

(j,i)∈Es

β(sj , si).

(6)

The factor graph representation of the term inside the sum
is depicted in Fig. 2. As seen, sensor variables are coupled
through x, which is common to all. To circumvent this prob-
lem, define the per-node-j local variable xj , and a similarity
function δ(xj , xi) = 1 whenever xj = xi, and δ(xj , xi) = 0
otherwise. The APP in (6) is equivalent to the following

pj(xj |y1, ..., yJ)=
∑

x∈F
J
Qx

\xj

∑
s∈F

J
Qs

p(x1, ..., xJ , s|y1, ..., yJ).

(7)

Note the abuse of notation, where x has been redefined to be
of dimensionality J × 1. The posterior inside the sum in (7)
can now be factored as

p(x1, ..., xJ , s|y1, . . . , yJ)∝

J∏
j=1

p(yj|xj , sj)p
1/J(xj)α(sj)

∏
(j,i)∈Es

β(sj , si)δ(xj , xi). (8)
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This model effectively decouples global dependencies into
local ones. All factors depend on either local variables
xj or sj , or on local and neighboring variables xi or si.
To derive efficient message passing schedules, group lo-
cal variables by defining zj := (xj , sj), taking values in
FQx

× FQs
. Local and neighboring factors can be likewise

grouped by defining f(zj) := p1/J(xj)α(sj)p(yj |xj , sj)
and g(zj , zi) := β(sj , si)δ(xj , xi), respectively. Message
passing can now be carried across the factor graph that results
from these definitions. Since the factor graph is pairwise,
the message-passing algorithm can be simplified to a single
node-to-node schedule. Message updates from node j to i
take the form

μj→i(zi) ∝
∑
zj

f(zj)g(zj , zi)
∏

k∈N(j)\i

μk→j(zj) (9)

whereN(j) \ i is the set of neighboring nodes to j except for
i. Message μj→i(zi) can be seen as a function with QxQs

different values, one for each state of zj . The algorithm starts
by setting all messages to one and runs for a fixed number of
iterations. At every node j the approximate marginal distri-
bution p(xj |y1, . . . , yJ) in (7) is computed as

b(xj) =
1

W

∑
sj∈FQs

∏
i∈N(j)

f(zj)μi→j(zj). (10)

where W is a normalization constant that ensures (10) is a
valid pmf. Since the factor graph contains loops, b(xj) is not
guaranteed to be equal to p(xj |y1, . . . , yJ). However when
the factor graph is acyclic the iterates in (9) are guaranteed
to converge to the exact per-entry marginals in a number of
iterations that equals the diameter of the network.

When p(s) =
∏J

j=1Q
−1
s ; i.e., the entries of vector s

entries are uncorrelated and equally-distributed, the scalar
model in this subsection boils down to the model in [5], in
which a scalar x is assumed too. The next subsection consid-
ers the most general case, not considered in [5] in which x is
a vector with correlated entries.

3.2. Vector observations

For V -dimensional x, one can certainly define local vectors
xj and proceed as in the previous subsection. However, the
number of states of (xj , sj) ∈ F

V
Qx

× FQs
grows exponen-

tially with V , and so message passing becomes impractical.
Instead, the idea here is to introduce V variables sv and rede-
fine zjv := (xjv , sjv). The problem in (5) is now equivalent
to

pjv(xjv |y1, ...,yJ )=∑
x∈F

JV
Qx

\xjv

∑
s∈F

JV
Qs

p(x1, ...,xJ , s1, ..., sV |y1, ...,yJ). (11)

The posterior inside the sum in (11) can be factored as

∏
j,v

f(zjv)

⎛
⎝∏

v

∏
(j,i)∈Es

g(zjv, ziv)

⎞
⎠
⎛
⎝∏

j

∏
(v,w)∈Ex

h(zjv, zjw)

⎞
⎠

(12)

where the functions f(zjv), g(zjv, ziv), h(zjv, zjw) are re-
spectively (re) defined as

f(zjv) := φ1/J (xjv)α
1/V (hjv)p(yjv|xjv , sjv)

g(zjv, ziv) := β1/V (sjv , siv)δ(xjv , xiv)

h(zjv, zjw) := ψ1/J(xjv , xjw)δ(sjv , sjw).

Careful examination of (12) reveals that factors can be
grouped into V + J subgroups; one subgroup per sensor
j and one subgroup per dimension v. An alternating message
passing schedule can be derived, involving two steps: 1) lo-
cal message passing per node j; and 2) distributed message
passing per dimension v. These two steps are detailed next.

1) Intra-sensor message passing: The per-sensor-j factors in
(12) are

∏
v f(zjv)

∏
(v,w)∈Ex

h(zjv, zjw), which forms a sub-
graph. We introduce a prior distribution for r(zjv), initialized
as r(zjv) = 1 and derive message updates

μjv→jw(zjw)∝
∑
zjv

r(zjv)f(zjv)h(zjv, zjw)
∏

ju∈N(jv)\jw

μju→jv(zjv).

After a fixed number of iterations an approximation to the
posterior distribution is given by

t(zjv) ∝
∏

ju∈N(jv)r(zjv)

f(zjv)μju→jv(zjv) (13)

which is used as a prior for the inter-sensor message passing
schedule described next.

1) Inter-sensor message passing: The per-dimension-v fac-
tors in (12) are

∏
v t(zjv)

∏
(j,i)∈Es

g(zjv, ziv) using the prior
t(zjv), the following message updates can be derived

μjv→iv(ziv) ∝
∑
xjv

t(zjv)g(zjv, ziv)
∏

kv∈N(jv)\iv

μkv→jv(zjv).

After a fixed number of iterations an approximation to the
posterior distribution r(zjv) is given by

r(zjv) ∝
∏

iv∈N(jv)

t(zjv)μkv→jv(zjv) (14)

with which the message passing in step 1) can be run again.

The overall algorithm thus runs iteratively, alternating be-
tween steps 1) and 2), and converges if r(zjv) = t(zjv),
which also yields the final marginal probabilities. Similar al-
ternating schedules can be found in [11]. With loopy factor
graphs, this schedule does not generally provide any guaran-
tees on the quality of the approximation or even convergence,
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Fig. 3. Correlation model among frequency bands.

even if the individual subgraphs in steps 1) and 2) are trees.
Section 4 will test this schedule via simulations.

Iterations in step 1) are carried within each sensor, as all
factors used are locally available. Iterations in step 2) involve
sending (receiving) messages μjv→iv(ziv) (μiv→jv(zjv)) to
(from) neighbouring nodes iv ∈ N(jv) per dimension v.
The overall number of scalars transmitted per sensor j are
|N(j)|V QxQs, which grows linearly with V .

4. DISTRIBUTED SPECTRUM SENSING

Consider the WSN is deployed to cooperatively find unoc-
cupied spectral bands by primary users (PUs). Sensors ob-
serve V bands and collect K samples per band. Denoting
xv ∈ {0, 1} as a binary random variable indicating the pres-
ence/absence of a signal at the v-th band, the receive-power
in this band per sensor j is given by

xv = 0 : yjv = ηjv

xv = 1 : yjv = hjPv + ηjv

where Pv is the PU power, hj = hj(sj) is the unknown
shadowing effect, assumed to belong to a finite number of
states, and ηjv is the average receiver noise assumed Gaus-
sian ηjv ∼ N(0, σ2

w) (this defines p(yjv|xv, sj)). Samples
yjv from nearby bands v, w are assumed correlated, and so
is the shadowing hj(sj) from nearby sensors j, i. This moti-
vates tackling this problem as in the previous section.

Fig. 2 shows the dependency graph for xv , which is a
Markov chain. Since this model is acyclic, factors φ(xv) and
ψ(xv, xw) can be expressed as φ(xv) := p(xv), ψ(xv, xw) =
p(xw|xv)/p(xw), where p(xv) is the prior probability of band
v being busy, and p(xw |xv) is the probability band w being
busy given the neighboring band v is busy [3]. Note that here
Zx = 1 in (1).

We simulate a network with J = 10 sensors arranged in a
circle observing V = 4 subbands. Shadowing is assumed to
take h(sj) = sj = {0, 1} (on-off) states, with α(sj = 1) =
0.65 and β(sj = 1, si = 1) = q and 1 − q otherwise. Vector
x is generated using φ(xv) = 0.75 and ψ(xv , xw) = 0.65.
Fig. 4 shows the simulated band detection error probability
as a function of q, which is a proxy for fading correlation. For
comparison, scalar BP ignoring correlations among entries in
x and s as in [5] as well as vector BP ignoring correlations in
s are included. As shown in Fig. 4, the proposed distributed
BP algorithm efficiently exploits statistical dependencies in x

and s to dramatically reduce the uncertainty introduced by the
noise and shadowing.
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Fig. 4. Error probability as a function of q for a WSN with
J = 10 sensors observing V = 4 spectrum bands.
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