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ABSTRACT
In this paper, we study the three-node Gaussian relay chan-

nel with decode-and-forward (DF) relaying, in which the

source and relay nodes transmit with power drawn from

energy-harvesting sources. Assuming a deterministic energy-

harvesting model under which the energy arrival time and

the harvested amount are known prior to transmission, the

throughput maximization problem over a finite horizon of

N transmission blocks is investigated. We consider the no-

delay-constrained (NDC) traffic case, for which the relay

can store the decoded information from the source with ar-

bitrary delay before forwarding it to the destination in each

N -block transmission. Although the formulated problem is

non-convex, we prove the optimality of a separation principle

for the source and relay power allocation over time, based

upon which a two-stage algorithm is developed to obtain the

optimal source and relay power profiles separately.

Index Terms— Throughput, relay channel, cooperative

communication, energy harvesting.

1. INTRODUCTION

In conventional energy-constrained wireless communication

systems such as wireless sensor networks (WSNs), sensors

are equipped with fixed energy supply devices, e.g., batteries,

which have limited operation time. When thousands of sen-

sors are deployed in a hostile or toxic environment, recharging

or replacing batteries becomes inconvenient and even impos-

sible. Hence, harvesting energy from the environment is a

much easier and safer way to provide almost unlimited energy

supply for WSNs. In [1], the authors investigated the power

management strategies for WSNs with energy-harvesting

nodes, for which random energy-harvesting models were as-

sumed. For the point-to-point communication powered by

energy-harvesting sources, the power allocation problem was

studied in, e.g., [2] with the deterministic energy-harvesting

model, and in [3] with the random energy-harvesting model.

In this paper, we study the half-duplex orthogonal Gaus-

sian relay channel with energy-harvesting source and relay

∗This work is supported in part by DoD-AFOSR under Grant FA9550-

09-1-0107 and DoD-DTRA under Grant HDTRA1-08-1-0010.

nodes. We consider the simple case with deterministic source

and relay energy profiles, corresponding to practical scenarios

where the energy-harvesting level can be predicted with neg-

ligible errors, and leave the more general random cases for

future study. We further focus on the scenario with no-delay-

constrained (NDC) traffic, in which the relay is allowed to

store the decoded information from the source with arbitrary

delay before forwarding it to the destination. Note that the re-

lay operation in the NDC traffic case is more flexible than that

for the delay-constrained (DC) traffic case previously studied

in [4], and is thus expected to achieve a higher throughput.

We examine the throughput maximization problem over a fi-

nite horizon of N -block transmission, which is non-convex

in general, and propose an algorithm to compute the globally

optimal solution.

Notation: log(·) and ln(·) stand for the base-2 and natural

logarithms, respectively; C(x) = 1
2 log (1 + x) denotes for

the AWGN channel capacity; (x)
+
= max(0, x).

2. SYSTEM MODEL

We consider the classic three-node relay channel, which con-

sists of one source-destination pair and one relay. We as-

sume that the relay node operates in a half-duplex mode over

two orthogonal frequency bands, while the source-relay and

source-destination use the same band. For simplicity, we as-

sume that the source-relay and relay-destination links operate

with equal bandwidth.

We consider the decode-and-forward (DF) relaying scheme,

which requires the relay to successfully decode the source

message. Moreover, we adopt an N -block transmission pro-

tocol: During each of the N source transmission blocks, say,

the i-th block, 1 ≤ i ≤ N , the source transmits with power

PS(i); after decoding the source message, the relay transmits

with power PR(i + 1) in the (i + 1)-th block. Moreover,

we assume that each block has B channel uses, where B is

assumed large enough such that the channel capacity results

in [5] are good approximations to the communication rates in

practical systems.

In addition to the block transmission model, we assume

that the harvested energy arrives at the beginning of each
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block with known amounts ES(i) in the i-th block and ER(i+
1) in the (i + 1)-th block, i = 1, 2, · · · , N , at the source

and the relay, respectively. In this paper, we assume that

the battery capacity to store the harvested energy is infinite.

Thus, the amount of energy available for each block transmis-

sion is constrained by the following source and relay energy-

harvesting constraints:

k∑
i=1

PS(i) ≤ 1

B

k∑
i=1

ES(i), k = 1, · · · , N, (1)

k∑
i=1

PR(i+ 1) ≤ 1

B

k∑
i=1

ER(i+ 1), k = 1, · · · , N. (2)

For the i-th source and the (i + 1)-th relay transmission

blocks1, i = 1, · · · , N , the channel input-output relationships

are given as:

ysr(i) =
√

hsrxs(i) + nr(i), (3)

ysd(i) =
√

hsdxs(i) + nd(i), (4)

yrd(i+ 1) =
√

hrdxr(i+ 1) + wd(i+ 1), (5)

where xs(i) and xr(i + 1) are the transmitted signals in

the i-th source and the (i + 1)-th relay transmission blocks

with power PS(i) and PR(i + 1), respectively; ysr(i) is

the received signal at the relay; ysd(i) and yrd(i + 1) are

the received signals at the destination from the source and

the relay, respectively; hsr, hrd, and hsd are the constant

channel power gains for the source-relay, relay-destination,

and source-destination links, respectively; nr(i), nd(i), and

wd(i + 1) are independent and identically distributed (i.i.d.)

circularly symmetric complex Gaussian (CSCG) noises each

with zero mean and unit variance. By scaling the source

and relay energy profiles with 1
hsr

and 1
hrd

, respectively, and

setting hsr = hrd = 1, the received SNR for each link is

not changed [4], and thus we can without loss of generality

assume that hsr = hrd = 1 and hsd = h0 in this paper.

Moreover, we only consider the case that 0 ≤ h0 < 1, which

means that the relay can always help with increasing the

achievable rate from the source to the destination by using

the DF scheme.

3. PROBLEM FORMULATION

In the i-th source transmission block, the source transmits

message wi with power PS(i) and rate R(i), and the relay

decodes wi reliably only if

R(i) ≤ C(PS(i)). (6)

Then, the relay partitions wi into bins with an equivalent rate

RB(i+1) [5], and transmits the binning index for message wi

1Note that the (i + 1)-th relay transmission block in fact corresponds to

the i-th source message.

in part of messages vi+1, · · · , vN+1. In the (i + 1)-th block,

the relay transmits message vi+1 with power PR(i + 1). At

the destination, the binning indices for all source messages

can be successfully decoded if

N∑
i=1

RB(i+ 1) =
N∑
i=1

C(PR(i+ 1)), (7)

N∑
i=k

RB(i+ 1) ≤
N∑
i=k

C(PR(i+ 1)), 2 ≤ k ≤ N, (8)

which is equivalent to

k∑
i=1

RB(i+ 1) ≥
k∑

i=1

C(PR(i+ 1)), 1 ≤ k ≤ N − 1, (9)

N∑
i=1

RB(i+ 1) =

N∑
i=1

C(PR(i+ 1)). (10)

With the decoded binning index, the i-th source message

can be decoded successfully at the destination if R(i) ≤
C(h0PS(i)) + RB(i + 1), i = 1, · · · , N . Combining this

with (6), the achievable rate of the i-th source message is

given as

R(i) = min {C(PS(i)), C(h0PS(i)) +RB(i+ 1)}
= C(h0PS(i)) +RB(i+ 1), i = 1, · · · , N, (11)

where the second equality is due to the fact that we can always

decrease RB(i+ 1) to make it true. In addition, (11) implies

that C(h0PS(i)) + RB(i + 1) ≤ C(PS(i)), i = 1, · · · , N ,

which leads to

k∑
i=1

C(PS(i))− C(h0PS(i)) ≥
k∑

i=1

RB(i+ 1), (12)

for k = 1, · · · , N . From (9), (10), and (12), we obtain

k∑
i=1

C (h0PS(i)) + C (PR(i+ 1)) ≤
k∑

i=1

C (PS(i)) , (13)

for k = 1, · · · , N . Thus, the average throughput for the NDC

case is maximized by solving the following problem:

(P1) max

∑N
i=1 C (h0PS(i)) + C (PR(i+ 1))

2(N + 1)
(14)

s. t.

k∑
i=1

C (h0PS(i)) + C (PR(i+ 1)) ≤
k∑

i=1

C (PS(i)) ,

k = 1, · · · , N, (1), and (2), (15)

PS(i) ≥ 0, PR(i+ 1) ≥ 0, i = 1, · · · , N, (16)

where the factor 1
2 in (14) is due to half-duplex relaying, and

1
N+1 is due to the fact that each N -block transmission re-

quires (N + 1)-block duration. Problem (P1) is non-convex

due to the first constraint in (15) [6], and thus difficult to solve

at a first glance. However, we will derive the globally optimal

solution in the next section.
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4. OPTIMAL POWER AND RATE ALLOCATION

We first prove that a separation principle for the source and

relay power allocation problem holds, upon which Problem

(P1) can be solved by a two-stage strategy: First obtain the

optimal source power allocation by ignoring the relay, and

then optimize the relay power allocation with the obtained

source power solution.

4.1. Optimal Source Power Allocation

First, we consider the following source power allocation prob-

lem by ignoring the relay:

(P2) max
N∑
i=1

C (hPS(i)) (17)

s. t. (1), PS(i) ≥ 0, i = 1, · · · , N, (18)

where h is a constant with 0 < h ≤ 1. Problem (P2) has

been solved in [2], for which the algorithm to compute the

optimal solution is summarized in [4]. Note that the opti-

mal source power profile P ∗
S(i)’s of Problem (P2) are non-

decreasing over i [2].

Since for the NDC case, the relay can store the binning in-

dices of the decoded source messages with arbitrary delay be-

fore forwarding them to the destination with best effort trans-

missions, the relay power profile intuitively should have no

effect on the optimal source power profile. This conjecture is

affirmed by the following proposition.

Proposition 4.1 For the NDC case, the optimal source power
solution for Problem (P2) is also globally optimal for Prob-
lem (P1).

The proof is given in [4] and omitted here due to the space

limitation. This proposition implies that the separation prin-

ciple for the source and relay power allocation problems is

optimal for Problem (P1).

4.2. Optimal Relay Power Allocation

With the optimal source power profile P ∗
S(i)’s obtained in

Problem (P2), the relay power allocation problem is still non-

convex due to the constraints in (15) [6]. However, by letting

r(i+1) = C (PR(i+ 1)), the relay power allocation problem

can be rewritten as

(P3) max
r(i+1)≥0

N∑
i=1

r(i+ 1) (19)

s. t.

k∑
i=1

r(i+ 1) ≤
k∑

i=1

C (P ∗
S(i))− C (h0P

∗
S(i)) , (20)

k∑
i=1

(22r(i+1) − 1) ≤ 1

B

k∑
i=1

ER(i+ 1), k = 1, · · · , N.

(21)

Table 1. Algorithm 1: Compute the optimal solution for

Problem (P3).

1. Initialize i = 1; while i ≤ N , repeat

2. Compute

i1 = arg min
i≤j≤N

{
C̃i +

∑j
k=i C (P ∗

S(k))− C (h0P
∗
S(k))

(j − i+ 1)B

}
,

i2 = arg min
i≤j≤N

{
Ẽi+1 +

∑j
k=i ES(k + 1)

(j − i+ 1)B

}
,

r̃1 =
C̃i +

∑i1
k=i C (P ∗

S(k))− C (h0P
∗
S(k))

(i1 − i+ 1)B
,

r̃2 = C
(
Ẽi+1 +

∑i2
k=i ES(k + 1)

(i2 − i+ 1)B

)
,

where C̃1 = Ẽ2 = 0, C̃i =
∑i−1

k=1 C (P ∗
S(k)) −

C (h0P
∗
S(k)) − r∗(k), and Ẽi+1 =∑i−1

k=1

(
ES(k + 1)− 22r

∗(k+1) − 1
)
, i = 2, · · · , N . Let

j0 = argminj=1,2 {r̃j}. Set r∗(j+1) = r̃j0 , j = i, · · · , ij0 ,

and i = ij0 + 1.

3. Algorithm ends.

It can be shown that Problem (P3) is convex over r(i + 1)’s
[6]. By the Karush-Kuhn-Tucker (KKT) optimality condi-

tions, we obtain the optimal solution for Problem (P3) as

r∗(i+ 1) =

(
1

2
log

1−∑N
k=i λk

2 ln 2 ·∑N
k=i γk

)+

, (22)

where λk and γk are the non-negative Lagrangian multipliers

corresponding to the k-th constraint in (20) and (21), respec-

tively. It is worth noting that from (22), we observe that the

optimal relay transmission rate r∗(i + 1) is non-decreasing

over i, and strictly increases when any one of the constraints

(20) and (21) is satisfied with equality. As such, Problem (P3)

can be solved by a forward search algorithm, denoted by Al-

gorithm 1 in Table 1, for which the optimality proof is similar

to that of Algorithm II in [4], and thus is omitted here.

Since r∗(i + 1)’s are non-decreasing, the optimal relay

power profile P ∗
R(i+ 1)’s of Problem (P3) with P ∗

R(i+ 1) =
22r

∗(i+1) − 1, i = 1, · · · , N , are also non-decreasing over i.

4.3. Optimal Rate Scheduling

With the obtained optimal source and relay power profiles

P ∗
S(i)’s and P ∗

R(i + 1)’s in the previous two subsections, the

binning rate RB(i+1) at the relay can be first determined (as

will be shown next), and then the source transmission rates

R(i)’s can be determined from (11). This completes the cod-

ing scheme for the NDC case in Section III.

To compute RB(i + 1)’s, the following observations are

first drawn. If C(P ∗
R(i+1)) > C(P ∗

S(i))−C(h0P
∗
S(i)), ∀i ∈

2819



{1, · · · , N}, the relay should transmit not only the binning

index of the i-th source message at the (i + 1)-th block, but

also those of source messages 1 ≤ j < i. Moreover, due

to the constraint in (15), it follows that if C(P ∗
R(i + 1)) >

C(P ∗
S(i))−C(h0P

∗
S(i)), ∀i, there must exist j with 1 ≤ j < i,

such that C(P ∗
R(j + 1)) < C(P ∗

S(j)) − C(h0P
∗
S(j)). The

above observations imply that to obtain RB(i+1)’s, we need

to find all i’s with C(P ∗
R(i + 1)) > C(P ∗

S(i)) − C(h0P
∗
S(i)),

and then use their surplus rates to transmit the binning indices

of source messages j ≤ i.

Thus, we develop a backward search algorithm, which

is summarized in [4], to obtain one of the feasible solutions

for RB(i + 1)’s. The main procedure of this algorithm is

described as follows. First, RB(i + 1)’s are initialized as

the minimum values between C(P ∗
R(i + 1)) and C(P ∗

S(i)) −
C(h0P

∗
S(i)) for all i’s, and a parameter t (sum of the positive

surplus rates for C(P ∗
R(i + 1)) − (C(P ∗

S(i))− C(h0P
∗
S(i))))

is set to be 0. The algorithm then searches the values for

RB(i + 1)’s in a backward way from i = N to 1. For any

i-th block, the algorithm computes temp = C(P ∗
R(i + 1)) −

(C(P ∗
S(i))− C(h0P

∗
S(i))). Then, if temp > 0, temp is added

to t; if temp < 0, the binning rate for the current source mes-

sage is raised, i.e., RB(i+1) is increased by min(−temp, t),
and this amount is then subtracted from t.

5. NUMERICAL RESULTS

In this section, we present some numerical results to validate

our theoretical results. The source and relay energy profiles

are given as ES(i) = AS sin
(
i−1
N 2π + π

2

)
+ AS , ER(i +

1) = AR sin
(
i−1
N 2π + θ

)
+ AR, 1 ≤ i ≤ N , respectively,

where AS , AR > 0 are the amplitudes of the sinusoidal en-

ergy profiles at the source and relay, respectively, and θ is

the phase shift between these two energy profiles. Here, we

choose B = 100, N = 40, θ = 5
4π, and AS = AR = 200.

We compare our proposed algorithm for the NDC case with

a greedy power allocation strategy, whereby both the source

and relay consume as much available power as possible to

maximize the instantaneous throughput at each block of the

N -block transmission, as well as the optimal power alloca-

tion algorithm for the DC traffic case give in [4].

In Fig. 1, we show the average throughputs versus the di-

rect link channel gain h0 for the proposed power allocation

algorithms and the greedy algorithm. It is observed that as

the direct link becomes stronger, i.e., h0 increases, there is

a throughput limit of 0.387 bps/Hz. For the NDC case, this

throughput limit is achieved even for very small h0 around

0.05. In contrast, for the DC case, the throughput increases

almost linearly and achieves the throughput limit when h0 ex-

ceeds 0.75. For the greedy algorithm, it is observed that the

throughput loss can be large, especially when h0 is small, as

compared to the proposed algorithm for the NDC case.
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Fig. 1. Throughput comparison of various power allocation

schemes for the orthogonal relay channel with energy har-

vesting constraints.

6. CONCLUTION

In this paper, we studied the throughput maximization prob-

lem for the orthogonal relay channel with energy-harvesting

source and relay nodes, assuming a deterministic energy-

harvesting model. For the case without decoding delay con-

straint at the destination, we examined the structures of the

optimal source and relay power profiles over time, and devel-

oped algorithms to compute these optimal power profiles.
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