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ABSTRACT

This paper deals with the resource allocation task for the uplink of
OFDMA-based cognitive radio (CR) systems. A weighted sum-rate
maximization problem is formulated to optimize the subcarrier as-
signment as well as the power loading per CR user, while protecting
the primary user (PU) systems. Since the CR-to-PU channels may
not be accurately acquired, the PU interference constraint is cast as
a chance constraint. Consequently, a convex conservative approxi-
mation of the chance constraint is employed for tractability reasons.
In particular, to mitigate the combinatorial complexity incurred for
optimal subcarrier assignment, a separable structure is pursued, and
the dual decomposition method is employed to obtain a near-optimal
solver. The resultant algorithm is tested via simulated tests.

Index Terms— cognitive radios, resource allocation, OFDMA,
channel uncertainty, optimization.

1. INTRODUCTION

Cognitive radios (CRs) aim to mitigate the scarcity of spectral re-
sources by allowing opportunistic use of the bands licensed to pri-
mary user (PU) systems. In an overlay scenario, CRs target unused
parts of the spectrum (called white space) via spectrum sensing. In
the underlay scenario, which is the setting of interest in this work,
CRs operate on the same band as the PUs by carefully controlling
the interference caused to the PU system. In this case, the channel
gain estimates between the CR transmitters and the PU receivers are
required for optimizing the resource allocation (RA) task.

Since CRs do not receive explicit support from the PUs, acquir-
ing accurate channel estimates is often challenging. Therefore, much
research effort has been devoted to ensure that the interference con-
straint is effected robustly against channel uncertainty [1–4]. Statis-
tical knowledge of the channel was assumed in [1–3], and bounded
uncertainty (within an ellipsoid) was considered in [4].

Orthogonal frequency division multiple access (OFDMA) is a
natural candidate for CR systems due to its flexibility in control-
ling spectrum usage. A major RA task for OFDMA radios is to
allocate subcarriers to different users, and also load each subcar-
rier with proper power levels. However, very few works have ad-
dressed the RA problem for OFDMA-based CRs under channel un-
certainty [2, 5]. Moreover, most existing approaches focus on the
downlink scenario, and are not readily extendible to the uplink setup.

Robust interference constraints are often cast as chance con-
straints, which are typically more difficult to handle than their de-
terministic counterparts as they may be either nonconvex, or, tough
to verify as being convex. Moreover, it is sometimes difficult to
express these constraints in closed form. In such cases, convex ap-
proximation of chance constraints is of practical merit [6].
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The present paper addresses the RA problem for OFDMA up-
link CRs with uncertain CR-to-PU channels. A weighted sum-rate
maximization problem is formulated under a probabilistic interfer-
ence constraint and maximum transmit-power constraints for the CR
users. The Bernstein method is adopted to approximate the prob-
abilistic constraint by a convex constraint. Even after the approx-
imation, the overall problem is still nonconvex due to the combi-
natorial assignment of users to each subcarrier. By employing ap-
propriate bounds, the approximation emerging from the interference
constraint can be further made separable across subcarriers. This
opens the door to the dual decomposition approach, which leads to a
near-optimal and computationally efficient solution [7].

The rest of the paper is organized as follows. The problem is
formulated in Sec. 2, and Bernstein’s approximation technique tai-
lored for chance constraints is outlined in Sec. 3. The RA algorithm
is developed in Sec. 4. Numerical results are presented in Sec. 5, and
conclusions are drawn in Sec. 6.

2. PROBLEM STATEMENT

Consider the uplink mode of a network comprising K CR users
communicating with their base station (BS) using OFDMA over N

subcarriers. The instantaneous channel gain h
(n)
k between CR user

k ∈ K � {1, 2, . . . , K} and the CR BS on subcarrier n ∈ N �

{1, 2, . . . , N} is assumed to be perfectly known. It is further as-
sumed that during the sensing phase, the presence of an active PU
has been detected. In order to limit the interference inflicted to the
PU, the channels from the CR users to the PU must be known. Let
g
(n)
k denote the channel gain from the k-th CR to the PU receiver on

subcarrier n. Due to the lack of cooperation from the PU system,
it is difficult to estimate g

(n)
k precisely. To capture this uncertainty,

g
(n)
k is modeled as a random variable.

A relevant RA problem is to maximize the weighted sum of all
CR throughputs under the transmit-power constraints (one per CR),
and the PU interference constraint. Let p(n) denote the transmit-
power loaded on subcarrier n, where 0 ≤ p(n) ≤ P

(n)
max. Let p

and Pmax be the vectorized versions of {p(n)} and {P (n)
max}, respec-

tively. Also, let k(n) ∈ K represent the index of the user served on
subcarrier n, and define k � [k(1), . . . , k(n)]T . With wk denoting
the positive weight for user k ∈ K, the following chance-constrained
optimization problem is of interest

(P1) max
0�p�Pmax,k∈KN

X
n∈N

wk(n) log
“
1 + h

(n)

k(n)p
(n)
”

(1)

subject to
X

n∈N :k(n)=k

p(n) ≤ Pk,max, k ∈ K (2)

Pr

(X
n∈N

g
(n)

k(n)p
(n) < Imax

)
≥ 1 − ε (3)
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where (3) enforces that the interference power at the PU stays be-
low Imax with probability no less than 1 − ε. The feasible set of
(3) can be either convex or nonconvex, depending on the distribution
of g

(n)
k [8]. For example, Pr

˘
aT u < b

¯ ≥ 1 − ε is convex for
ε < 1/2, if [aT bT ]T has a symmetric logarithmically concave den-
sity [8]. However, even if (3) is convex, it may not be straightforward
to express it in closed form, rendering the optimization problem in-
tractable. Moreover, the overall problem would be still nonconvex
due to the combinatorial search over k.

In the following, a convex approximation of (3) is advocated,
which is also conservative in the sense that the approximate con-
straint implies the original constraint (3). This will be achieved by
using the Bernstein method [8,9]. By judiciously choosing the form
of the approximation, one can also ensure that the approximated con-
straint is separable in n. Then, an efficient near-optimal solution will
be obtained via dual decomposition [7].

3. APPROXIMATION OF CHANCE CONSTRAINTS

3.1. Bernstein Approximation

A useful class of approximation techniques for chance constraints
known as Bernstein approximations is briefly reviewed in the present
context [8, 9]. Consider a chance constraint of the form

Pr

(
f0(p) +

NX
n=1

ζnfn(p) < 0

)
≥ 1 − ε (4)

where p denotes a deterministic parameter, and {ζn} are random
variables. Suppose one desires to meet this constraint for a given
family of {ζn} distributions, provided the following assumptions are
satisfied.

as1) {fn(p)} are affine in p for n = 0, 1, . . . , N .

as2) {ζn} are independent of each other, and their marginal distri-
butions {πn} belong to ∗-compact convex sets of probability
distributions.

as3) {πn} have a common bounded support of [−1, 1]; that is,
−1 ≤ ζn ≤ 1 for all n = 1, . . . , N .

Under these assumptions, the following constraint constitutes a con-
servative substitute and thus implies (4)

inf
ρ>0

"
f0(p) + ρ

NX
n=1

Ωn

`
ρ−1fn(p)

´
+ ρ log

„
1

ε

«#
≤ 0 (5)

where Ωn(y) � max
πn

log
`R

exp(xy)dπn(x)
´
. Moreover, it is guar-

anteed that (5) is convex [8, 9]. The approximation is useful when
{Ωn(y)} can be evaluated efficiently. In general, one can consider
an upperbound for Ωn(y) given by

Ωn(y) ≤ max{μ−
n y, μ+

n y} +
σ2

n

2
y2, n = 1, . . . , N (6)

where μ−
n , μ+

n with μ−
n ≤ μ+

n and σn are constants that depend on
the given families of probability distributions. Some examples are
given in Table 1 in [9]. Replacing Ωn(·) in (5) with this upperbound,
and invoking the arithmetic-geometric inequality, yields

f0(p) +
NX

n=1

max{μ−
n fn(p), μ+

n fn(p)}

+

s
2 log

„
1

ε

« NX
n=1

σ2
nfn(p)2

! 1
2

≤ 0 (7)

as a convex conservative surrogate for (4).

Suppose now that the distributions of g
(n)
k have bounded sup-

ports [a
(n)
k , b

(n)
k ]. The case with unbounded supports will be treated

in Sec. 3.2. Introduce constants α
(n)
k � 1

2
(b

(n)
k − a

(n)
k ) and β

(n)
k �

1
2
(b

(n)
k + a

(n)
k ) to normalize the supports to [−1, 1] per as3); that

is, α
(n)
k ζn + β

(n)
k ∈ [a

(n)
k , b

(n)
k ]. Then, letting f0(p) = −Imax +PN

n=1 β
(n)

k(n)p
(n) and fn(p) = α

(n)

k(n)p
(n) for n ∈ N , it follows that

(4) is equivalent to (3). Thus, substituting into (7), and noting that
p(n) ≥ 0, one obtains

− Imax +
NX

n=1

β
(n)

k(n)p
(n) +

NX
n=1

μ
(n)+

k(n) α
(n)

k(n)p
(n)

+

r
2 log

1

ε

 
NX

n=1

(σ
(n)

k(n)α
(n)

k(n)p
(n))

2

! 1
2

≤ 0. (8)

The overall RA problem corresponding to (P1) with (3) re-
placed by (8) is still nonconvex due to the combinatorial search
in k. In fact, as the variables p(n) are coupled through the last
term in (8), the search complexity grows rapidly as the number
of subcarriers (N ) increases. To mitigate these issues, we further
approximate (8) by noting that the last term in (8) involves the 	2-
norm of the vector [σ

(1)

k(1)α
(1)

k(1)p
(1), . . . , σ

(N)

k(N)α
(N)

k(N)p
(N)], and that

‖x‖2 ≤ √
N‖x‖∞ for any x ∈ R

N . Thus, the constraint becomes

NX
n=1

γ
(n)

k(n)p
(n) +

r
2N log

1

ε
max
n∈N

σ
(n)

k(n)α
(n)

k(n)p
(n) ≤ Imax (9)

where γ
(n)

k(n) � μ
(n)+

k(n) α
(n)

k(n) + β
(n)

k(n).

Alternatively, one can appeal to the fact that ‖x‖2 ≤ ‖x‖1 to
obtain yet another substitute for (3) as

NX
n=1

γ
(n)

k(n)p
(n) +

r
2 log

1

ε

NX
n=1

|σ(n)

k(n)α
(n)

k(n)p
(n)| ≤ Imax. (10)

Both (9) and (10) are amenable to dual decomposition, as will be
discussed in Sec. 4.

3.2. Extensions to Channels with Unbounded Support

In the preceding discussion, Bernstein approximations were applied
to bounded channel gains. While this may be reasonable consider-
ing the finite dynamic ranges of the A/D converters in the radios,
presuming too large a range for the uncertain parameters inevitably
leads to a very loose approximation of the chance constraint. An al-
ternative approach is developed here when the channel distributions
are known (as opposed to the previous case where the family of pos-
sible distributions were known.)

Upon defining I �
P

n
g
(n)

k(n)p
(n), it is possible to express

Pr {I < Imax} in (3) as

Pr {I < Imax|a ≤ g ≤ b}Pr {a ≤ g ≤ b}
+ Pr {I < Imax|g < a or g > b}Pr {g < a or g > b} (11)

where g � [g
(1)

k(1), ..., g
(N)

k(N)]
T , and a � [a

(1)

k(1), ..., a
(N)

k(N)]
T and

b � [b
(1)

k(1), ..., b
(N)

k(N)]
T are appropriate constants determined such
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that δ � Pr {a ≤ g ≤ b} ∈ (1− ε, 1). Then, neglecting the second
term in (11), inequality (3) can be approximated conservatively as

Pr{I < Imax |a ≤ g ≤ b} ≥ 1 − ε

Pr{a ≤ g ≤ b} =
1 − ε

δ
� 1 − ε′

(12)

which can now be approximated by (9) or (10) with ε replaced by ε′.
To make things concrete, consider the case where the p.d.f. of

g
(n)
k is exponential (Rayleigh fading) with mean ḡ

(n)
k as

f
g
(n)
k

(x) =
1

ḡ
(n)
k

exp

 
− x

ḡ
(n)
k

!
. (13)

It then follows from independence that

Pr{a ≤ g ≤ b} =

NY
n=1

Pr
n

a
(n)

k(n) ≤ g
(n)

k(n) ≤ b
(n)

k(n)

o

=

NY
n=1

"
exp

 
−

a
(n)

k(n)

ḡ
(n)

k(n)

!
− exp

 
−

b
(n)

k(n)

ḡ
(n)

k(n)

!#
= δ. (14)

It is natural to choose the lowerbound as a = 0. To determine b,

Pr
n

0 ≤ g
(n)

k(n) ≤ b
(n)

k(n)

o
is enforced to be constant across subcarri-

ers. Then, b is obtained as

b
(n)

k(n) = ḡ
(n)

k(n) log
1

1 − δ
1
N

, n ∈ N . (15)

It is worth noting that even if channel p.d.f.’s are exactly known
to be exponential, the p.d.f. of I is not easily expressed in closed
form [10].

4. RESOURCE ALLOCATION ALGORITHM

The OFDMA RA problems with separable structure can be tack-
led efficiently in the dual domain. In this approach, the overall
problem is divided into multiple smaller per-subcarrier subproblems,
which can be solved independently, coordinated by the dual vari-
ables. Moreover, it can be shown that the duality gap vanishes as
the number of subcarriers increases. The approach has been widely
applied to the RA problems for multi-carrier systems [7].

Problem (P1) with (3) substituted with (10) is clearly separa-
ble in n. Upon using (9) and introducing auxiliary variables u �

[u1, . . . , uN ]T , the following separable constraints are seen to be
equivalent.

NX
n=1

γ
(n)

k(n)p
(n) +

r
2 log

1

ε

NX
n=1

un ≤ Imax (16)

√
Nσ

(n)

k(n)α
(n)

k(n)p
(n) ≤

NX
n′=1

un′ , n = 1, . . . , N (17)

We continue the derivation of the RA algorithm using the above con-
straints. The case with (10) can be handled similarly.

Introducing dual variables λ � [λ1, λ2, . . . , λN ]T � 0, μ �

[μ1, μ2, . . . , μK ]T � 0 and ν ≥ 0 to relax (17), (2), and (16),

1: Initialize Σ and θ � [μT λT ]T . Set tolerance τ
2: Repeat
3: If θ < 0, for some indices i ∈ I,

set d =
P

i∈I ei (ei is the i-th canonical basis)
4: Otherwise:
5: Find k∗ and p∗ from (25)–(26)
6: Set d as the subgradient of D(·) w.r.t. [μT λT ]T

7: If
√

dT Σd < τ , stop
8: Perform the ellipsoid update:
9: d ← d/

√
dT Σd

10: θ ← θ − Σd/(N + K + 1)

11: Σ ← (N+K)2

(N+K)2−1

“
Σ − 2

N+K+1
ΣddT Σ

”
Table 1. Overall RA algorithm.

respectively, one can write the Lagrangian as

L(p,u; λ, μ, ν) =
X
n∈N

wk(n)

h
log
“
1 + h

(n)

k(n)p
(n)
”

−
“
νγ

(n)

k(n) + μk(n) + λn

√
Nσ

(n)

k(n)α
(n)

k(n)

”
p(n) (18)

+

 X
n′∈N

λn′ − ν

r
2 log

1

ε

!
un

#
+ νImax +

X
k∈K

μkPk,max.

Therefore, the dual function is

D(λ, μ) = sup
0�p�Pmax,u,k∈KN

L(p,u; λ, μ, ν) (19)

= sup
0�p�Pmax

k∈KN

X
n∈N

Ln(p(n), k(n)) + νImax +
X
k∈K

μkPk,max

(20)

where

Ln(p(n), k) � wk log
“
1 + h

(n)
k p(n)

”
− t

(n)
k p(n) (21)

t
(n)
k � νγ

(n)
k + μk + λn

√
Nσ

(n)
k α

(n)
k (22)

and ν =
`
2 log 1

ε

´− 1
2
P

n′∈N λn′ . The dual problem is thus

inf
λ�0,μ�0

D(λ, μ) . (23)

It can be seen from (20) that the optimization can be decoupled
to per-tone problems given by

max
0≤p(n)≤P

(n)
max,k(n)∈K

Ln(p(n), k(n)) (24)

If k(n) = k, the optimal power loading p∗(n)[k] can be shown to be

p∗(n)[k] =

"
wk

t
(n)
k

− 1

h
(n)
k

#P
(n)
max

0

, n ∈ N (25)

where [·]ba � min{max{0, a}, b}. The optimal user allocation k∗ is
then given by

k∗(n) ∈ arg max
k∈K

Ln(p∗(n)[k], k), n ∈ N (26)

and the optimal power loading by

p∗(n) = p∗(n)[k∗(n)], n ∈ N . (27)

The dual problem (23) can be solved using, e.g., the subgradient
method, or the ellipsoid method. The overall RA algorithm based on
the ellipsoid method is given in Table 1.
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5. NUMERICAL TESTS

The proposed RA algorithms were tested via numerical experiments.
A 2-user system with N = 8 OFDM subcarriers was considered.
The wideband links between the CR-BS and the CR users were sim-
ulated as 4-path Rayleigh fading channels. The channel gains be-
tween the CR users and the PU are modeled as i.i.d. and exponen-
tially distributed with ḡ

(n)
k = 2 for all k and n, corresponding to

the case where the instantaneous small-scale fading is not known.
The truncation thresholds b were computed via (15). The parame-
ters μ

(n)+
k = μ

(n)−
k and σ

(n)
k for the Bernstein approximations were

chosen from Table 1 in [9] using the known first- and second-order
moments of the truncated channel gains.

In Fig. 1, the weighted sum-rates averaged over 80 channel real-
izations of {h(n)

k } are depicted for different values of ε when w2 =
4w1 = 0.8. The value of δ was set to 1 − 0.5ε. The curve with star
markers represents the optimal objective obtained from solving (P1)
with (3) replaced by (8) (“	2-norm” approximation). Since dual de-
composition cannot be applied in this case, an exhaustive search of
k ∈ KN was performed. For a given assignment k, the power load-
ing problem is convex. The curves with the diamond and the circle
markers correspond to the solutions of (P1) with (10) (“	1-norm”)
and (9) (“	∞-norm”) as the approximate interference constraints, re-
spectively. Since smaller ε tightens the constraint, the weighted-sum
rates increase monotonically in ε. Also, since the “	1-” and the “	∞-
norm” cases are more conservative than the “	2” case, the rates for
the former are lower than those for the latter. However, it is seen
from the figure that the differences are small. On the other hand,
when the channels {g(n)

k } are perfectly known, the average weighted
sum-rate was around 1.6, exhibiting a large gap compared to the
case when only the statistical knowledge of the channels is avail-
able. However, the gap can be reduced when (imperfect) channel
estimation is modeled, and will be explored in the journal version.

The sensitivity of the weighted sum-rate performance to the
choice of δ is examined in Fig. 2 for ε = 0.01 and 0.1. It is seen that
the performance is quite robust to the choice of δ.

6. CONCLUSIONS

Maximization of the weighted sum-rate of an OFDMA-based CR
uplink was accomplished by optimizing the power loading and the
user assignment over the individual subcarriers. The RA problem
must ensure that the interference power experienced at each PU’s lo-
cation is less than a pre-specified threshold. Since the channel gains
between CR transmitters and PU receivers often cannot be estimated
accurately, the PU interference constraint was cast as a chance con-
straint. As the resulting optimization problem is intractable, a con-
vex conservative surrogate of the chance constraint was employed
using Bernstein approximations. On the other hand, due to the com-
binatorial complexity of searching for the optimal user assignment,
OFDMA RA problems are often tackled in the dual domain. To ap-
ply this technique, the chance constraint was further approximated
so that the overall problem possesses a separable structure. An algo-
rithm based on the dual decomposition method was presented. The
numerical tests showed that performance degradation due to the ap-
proximation introduced for enforcing the separability is rather in-
significant.
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