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ABSTRACT

The fundamental problem of our interest here is soft MIMO detec-
tion. We propose a method that yields excellent performance, at
low and at fixed (deterministic) complexity. Our method provides a
well-defined tradeoff between computational complexity and perfor-
mance. Apart from an initial step consisting of selecting columns,
the algorithm involves no searching nor algorithmic branching;
hence the algorithm has a completely predictable run-time, and it is
readily and massively parallelizable.

Index Terms— soft MIMO detection, MMSE, interference sup-
pression, log-likelihood ratio, fixed complexity

1. INTRODUCTION

We consider multiple-input multiple-output (MIMO) systems, which
are known to substantially increase both the spectral efficiency in
rich scattering environments [1] and the link robustness. A major
difficulty in the implementation of MIMO systems is the signal sep-
aration (detection) problem, which is generally computationally ex-
pensive. This problem can be especially pronounced in large MIMO
systems [2]. The main reason for why MIMO detection is diffi-
cult is the occurrence of ill-conditioned MIMO channels. For in-
stance, the complexity of the optimal detector, which computes the
log-likelihood ratio (LLR) values exactly and therefore solves the
MIMO detection problem optimally, grows exponentially with the
number of transmit antennas and polynomially with the size of the
signal constellation. Suboptimal and fast methods, such as zero-
forcing perform well only for well-conditioned channels.

Many different methods have been proposed that aim to perform
close to the optimal detector with reduced computational complex-
ity [3]–[7]. Some of today’s state-of-the-art detectors provide the
possibility of trading complexity for performance via the choice of
some user parameter. One important advantage of such detectors is
that the tradeoff parameter can be adapted to the effective channel
conditions in order to improve the overall performance. Amongst
these detectors, there are two main subcategories. The first consists
of detectors that do not have fixed complexity and perform a reduced
tree-search, such as the sphere-decoding (SD) aided max-log method
and its relatives [3]–[5]. One of the more recent ones is the reduced
dimension maximum-likelihood search (RD-MLS) of [5]. Unfortu-
nately, the methods in this category have an exponential worst-case
complexity unless a suboptimal termination criterion is used. The
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other subcategory of detectors are the ones that have fixed complex-
ity. These are much more desirable from an implementation point
of view in order to avoid over-dimensioned hardware. Examples of
such detectors are the soft-output via partial marginalization (PM)
method [6] and the fixed-complexity SD (FCSD) [7] aided max-
log method. These fixed-complexity detectors provide a simple and
well-defined tradeoff between computational complexity and perfor-
mance, they have a fixed and fully predictable run time, and they are
highly parallelizable. Note that the FCSD is equivalent to the PM
method with an additional max-log approximation.

We propose a new method that is inspired by the ideas in [5]–[7]
of partitioning the original problem into smaller problems. As in
the PM method, we perform marginalization over a few of the bits
when computing the LLR values. The approximate LLRs that enter
the marginalization are simpler than those in PM, and this substan-
tially reduces the complexity of our algorithm which will be clear in
Sec. 3. In addition to that, we suppress the interference on the con-
sidered subspace by performing soft interference suppression (SIS).
The SIS procedure, which is one of the constituents of our algorithm
is inspired by the work in [8]–[10]. The main difference between the
SIS procedure in our work and that in [8]–[10] is that we allow for
the signal subspace (and the interfering subspace) to have varying
dimensionality. The additional differences are: (i) we perform the
SIS in a MIMO setting internally without the need of a priori infor-
mation from the decoder as opposed to [8] and (ii) we do not iterate
the internal LLR values nor do we ignore the correlation between the
interfering terms over the different receive antennas as in [9], [10].

Summary of contribution: We propose a novel MIMO detec-
tion method that runs at fixed complexity, provides a clear and
well-defined tradeoff between computational complexity and per-
formance, and is highly parallelizable. The ideas behind it are
fundamentally simple and allow for very simple algorithmic imple-
mentations. We refer to the new method as subspace marginalization
with interference suppression (SUMIS).

2. PRELIMINARIES

We consider the real-valued MIMO-channel model

y = Hs+ e, (1)

where H ∈ R
NR×NT is the MIMO channel matrix, s ∈ SNT is the

transmitted vector. We assume that S = {−1,+1} (BPSK modula-
tion per real dimension), hence referring to a “symbol” is equivalent
to referring to a “bit”. With some extra expense of notation, it is
straightforward to extend all results that we present to higher order
constellations. Further, e ∈ R

NR ∼ N (0, N0
2
I) denotes the noise
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vector and y ∈ R
NR is the received vector. The channel is per-

fectly known to the receiver and in what follows, we assume that
NR ≥ NT since this is typical in practice and simplifies the math-
ematics performed in this paper. With separable complex symbol
constellations, every complex-valued model of type (1) can be posed
as a real-valued model of the same type, see [6].

2.1. Optimal Soft MIMO Detection

The optimal soft information desired by the channel decoder is the a
posteriori log-likelihood ratio

l(si|y) � log

(
p(si = +1|y)

p(si = −1|y)

)
, (2)

where si is the i:th bit of the transmitted vector s. The quantity in
(2) tells us how likely it is that the i:th bit of s is equal to minus or
plus one, respectively. By using Bayes’ rule, performing marginal-
ization over all bits except the i:th bit, and assuming uniform a priori
probabilities, the log-likelihood ratio (LLR) becomes

l(si|y) = log

⎛⎝∑
s:si(s)=+1 exp

(
− 1

N0
‖y −Hs‖2

)
∑

s:si(s)=−1 exp
(
− 1

N0
‖y −Hs‖2

)
⎞⎠ . (3)

where the notation
∑

s:si(s)=x
means the sum over all possible vec-

tors s ∈ SNT for which the i:th bit is equal to x. In (3), there are
2NT terms that need to be evaluated and added. This exponential
complexity is the main problem in MIMO detection that needs to be
addressed. Thus, many approximate methods have been proposed.

In order to explain our method and the competing state-of-the-
art methods, for fixed ns ∈ {1, . . . , NT}, we define the following
partitioning of the model in (1)

y = Hs+e =
[
H H̃

]
︸ ︷︷ ︸

col. permut. of H

[
s̄
T

s̃
T
]

︸ ︷︷ ︸
permut. of s

T

+ e = Hs̄+H̃ s̃+e, (4)

where H ∈ R
NR×ns , H̃ ∈ R

NR×(NT−ns), s̄ ∈ Sns contains the
i:th bit si in the original vector s, and s̃ ∈ SNT−ns . The choice of
partitioning involves the choice of a permutation, and how to make
this choice (for ns > 1) is not obvious. In fact, for each bit in s,
there are

(
NT−1
ns−1

)
possible partitionings in (4). How we perform this

partitioning is explained in Sec. 3. Note that for different detectors,
the choice of partitioning serves different purposes.

2.2. Today’s State-of-the-Art MIMO Detectors

The PM Method in [6]: PM offers a tradeoff between exact and
approximate computation of (3), via a parameter r = ns − 1 ∈
{0, . . . , NT − 1}. We present the slightly modified version in [11]
of the method in [6], which is simpler than that in [6] but without
comprising performance. The PM method implements a two-step
approximation of (3). More specifically, in the first step it approxi-
mates the sums of (3) that correspond to s̃ with a maximization,

l(si|y) ≈ log

⎛⎜⎜⎜⎝
∑

s̄:si(s)=+1

max
s̃

exp
(
−

1

N0
‖y − Hs̄− H̃ s̃‖2

)
∑

s̄:si(s)=−1

max
s̃

exp
(
−

1

N0
‖y − Hs̄− H̃ s̃‖2

)
⎞⎟⎟⎟⎠ .

(5)
In the second step, the maximization in (5) is approximated with
a linear filter with quantization (clipping), such as the zero-forcing

with decision-feedback (ZF-DF) detector [6]. The ZF-DF method is
computationally much more efficient than exact maximization, but
it performs well only for well-conditioned matrices. However, the
max problems in (5) are generally well-conditioned since the matri-
ces H̃ are tall. For PM, when forming the partitioning in (4), the
original bit-order in s = [s1, . . . , sNT ]

T is permuted in (5) in a way
such that the condition number of H̃ is minimized, see [6]. No-
tably, PM performs ZF-DF aided max-log detection for r = 0 and
computes the exact LLR values (as defined by (3)) for r = NT − 1.

The FCSD Method in [7]: FCSD essentially performs the same
procedure as the PM method except that it introduces an additional
approximation by employing the max-log approximation on the re-
maining sums (sums over {s̄ ∈ Sns : si(s) = x}) in (5) in the PM
method. Hence, instead of performing summations over {s̄ ∈ Sns :
si(s) = x} for each x as in PM, it picks the best candidate from
{s̄ ∈ Sns : si(s) = x} for each x.

The RD-MLS Method in [5]: RD-MLS performs further the same
procedure as FCSD except that it does not perform clipping after the
linear filtering and uses an SD type of algorithm to perform a re-
duced tree-search over {s̄ ∈ Sns : si(s) = x} for each x. Although
this method reduces the number of layers in the tree, it does not nec-
essarily improve the conditioning of the reduced problem, as the PM
and FCSD methods do. This is due to the unquantized linear filter-
ing operation that essentially results in performing a projection of
the original space s onto the orthogonal complement of the column
space of H̃ . Therefore, for an ill-conditioned matrixH , it is unclear
if the RD-MLS algorithm would visit significantly fewer branches in
the reduced space s̄ than in the original space s.

3. PROPOSED SOFT MIMO DETECTOR

In our proposed method, which we refer to as the subspace marginal-
ization with interference suppression (SUMIS) method, there are
two main stages. In stage I, a first approximation to the LLR for
each bit is computed. In stage II, these approximate LLRs are used
in an interference suppression mechanism, whereafter the LLR val-
ues are calculated based on the resulting “purified” model.

Stage I: We start with the partitioned model in (4)

y = Hs̄ + H̃ s̃ + e︸ ︷︷ ︸
interference+noise

(6)

and approximate it via y ≈ ȳ � Hs̄ + n where n is a Gaussian

stochastic vector N (0,Q) with Q � H̃ H̃
T
+ N0

2
I . Subsequently,

we compute the a posteriori probability P (s̄|ȳ), which with uniform
a priori probabilities per bit is proportional to the likelihood function

p(ȳ|s̄) ∝ exp

(
−
1

2
(ȳ − Hs̄)TQ−1(ȳ − Hs̄)

)
.

The computation of this quantity can be performed computationally
more efficiently by using the equivalent model(

H
T
Q

−1

H
)−1

H
T
Q

−1

ȳ= s̄+ n̄, n̄ ∼ N
(
0,
(
H

T
Q

−1

H
)−1)

.
(7)

Furthermore, for better numerical stability and faster computation,
we use the matrix inversion lemma when we compute the inverse
Q−1.
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Next, since bit sk in the original vector s in (6) is contained in
s̄, the a posteriori probability P (sk|y) can be approximated with
P (sk|ȳ), which is calculated by marginalizing out the remaining
bits in P (s̄|ȳ). Due to the assumption on S being BPSK, we can
perform this marginalization in the LLR domain as

λk � log

(∑
s̄:sk=+1 exp

(
− 1

2
(y − Hs̄)TQ−1(y − Hs̄)

)∑
s̄:sk=−1 exp

(
− 1

2
(y − Hs̄)TQ−1(y − Hs̄)

)) ,

(8)
which can be efficiently computed using the Jacobian logarithm. The
a posteriori probabilities of the remaining elements in s are approxi-
mated analogously to (6)-(8) by simply choosing different partition-
ings (permutations) of H and s such that the bit of interest is in s̄.
Using the probability approximations (in the LLR domain) in (8),
we compute the conditional expected value of bit sk under the as-
sumption that all the bits in s conditioned on y are independent,

E{sk|y}�
∑
s∈S

sP (sk=s|y) ≈
−1

1+eλk

+
1

1+e−λk

= tanh
(
λk

2

)
.

(9)
This stage is performed for all bits sk in s, i.e., k = 1, . . . , NT.

Stage II: For each bit si, the interfering vector s̃ in (6) is sup-
pressed using

y
′
� y − H̃E{s̃|y}=Hs̄+ H̃ (s̃− E{s̃|y}) + e︸ ︷︷ ︸

interference+noise

≈Hs̄+ n
′.

(10)

where n′ ∼ N
(
0,Q′

)
with Q′ � H̃DH̃

T
+N0

2
I and D being the

conditional covariance matrix of s̃. Since S = {−1,+1} and the
elements in s̃ are assumed to be independent conditioned on y, we
get

D = E
{
diag(s̃)2

∣∣y}− E
{
diag(s̃)

∣∣y}2
= I − diag(E{s̃|y})2

where the operator diag(·) takes a vector of elements as input and
returns a diagonal matrix with these elements on its diagonal. After
the interfering vector s̃ is suppressed, we compute the LLRs. The
LLRs are computed by performing a full-blown marginalization in
(3) over the corresponding subspace s̄ in the approximated model in
(10). Hence, the LLR value we compute for the i:th bit is

l(si|y) ≈ log

⎛⎜⎜⎜⎜⎝
∑

s̄:si(s)=+1

exp

(
−
1

2
(y′−Hs̄)TQ′−1(y′−Hs̄)

)
∑

s̄:si(s)=−1

exp

(
−
1

2
(y′−Hs̄)TQ′−1(y′−Hs̄)

)
⎞⎟⎟⎟⎟⎠ .

(11)
The computation of (11) can be rewritten for improved numerical
efficiency, similarly to the LLR computation in the first stage.

Choosing the Permutations: The optimal permutation would be
the one that minimizes the bit-error-rate after decoding and this per-
mutation is hard to find. There are many ways to choose the permu-
tation via heuristic arguments. We aim to choose the partitioning, for
a bit sk in s, that suppresses the interfering vector s̃ in (6) as much
as possible. This essentially means that the columns in H should be
as orthogonal as possible to the columns in H̃ . Therefore, we base
our partitioning on HTH , which can be thought of as a covariance
matrix

H
T
H =

⎡⎢⎣ σ2
1 ρ1,2σ1σ2 . . .

ρ1,2σ1σ2 σ2
2

...
. . .

⎤⎥⎦ ,

and pick for a column or row k in HTH (bit k in s) the ns − 1
indexes that correspond to the strongest correlation coefficients ρk,�.
Then, these indexes along with the index k specify the columns from
H that are placed in H . The rest of the columns are placed in H̃ .

Computational Complexity: By omitting the pre-processing pro-
cedure and assuming that NR ≈ NT � ns, we give a rough com-
plexity count for finding all the bits in one vector y. For a vector
y, we must compute the inverse Q′−1 for each partitioning. This
can be done with O(NT

3) operations for all partitionings by using
the Woodbury matrix identity. In each marginalization step, we have
2ns terms that compute matrix-vector multiplications and one matrix
inverse of dimension ns, hence requiring together O(ns

22ns) oper-
ations. Therefore, for NT � ns, our algorithm requires roughly
O(NT

3) operations for all the bits, which is much lower than the
corresponding complexity of the PM method, O(NT

32ns ).

Summary: The steps of the SUMIS algorithm are summarized in
Alg. 1 with generic pseudo-code. Note that due to the fact that most
of the NT permutations of H and s will overlap, there is room to op-
timize the operation of the algorithm much more. Via the adjustable
subspace dimensionality, i.e., the ns-parameter, our method provides
a simple and well-defined tradeoff between computational complex-
ity and detector performance. For ns = NT, there is no interfering
vector s̃ and SUMIS performs exact LLR computation. For ns = 1,
SUMIS performs the soft MMSE method with the additional step of
suppressing the interfering vector s̃.

Algorithm 1 Subspace Marginalization with Interference Suppres-
sion (SUMIS)

Start with some H , y and ns ∈ {1, . . . , NT}
for k = 1, . . . , NT // – First stage – //do

Decide upon a partitioning in (4) based on HTH

Calculate λk in (8) (cond. probability of sk in terms of LLR)
Calculate E{sk|y} and Var {sk|y} = 1− E{sk|y}

2 in (9)
end for
for each bit in s // – Second stage – //do

Suppress the interfering vector s̃ and calculate y′ in (10)
Calculate the new covariance matrix Q′

Calculate the LLR in (11)
end for

4. NUMERICAL RESULTS

4.1. Simulation Setup

Using Monte Carlo simulation technique we plot the performance
of our new method in terms of frame-error rate (FER) with respect
to Eb/No where Eb is the energy per information bit. We use
quadrature phase-shift keying (QPSK) modulation with a 4×4 and a
6×6 complex MIMO system, which means that the detection is per-
formed on a real-valued 8×8 and 12×12 MIMO system with binary
phase-shift keying (BPSK) modulation, respectively. The channel is
chosen to be Rayleigh fading. We consider two different coherence
times: slow fading (each codeword sees one channel realization) and
fast fading (each codeword spans over 40 channel matrices), respec-
tively. We consider two different channel codes: one bit-interleaved
convolution (BIC) code with rate 1/3, and one low-density parity-
check (LDPC) code with rate 1/2. Each codeword consists of 10000
bits. For comparison, we also plot the curves of the optimal detector
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and of the PM method in [6]. Since the FCSD method is an approx-
imation of the PM method, we refrain from plotting its performance
curves. We also ignore plotting the curves of RD-MLS due to the
fact the its complexity is not predictable and a fair comparison is
difficult to make.
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Fig. 1. Performance comparison. The figures show the frame er-
ror rate (FER) as a function of Eb/N0. We have one figure for
4× 4 and one for 6× 6 complex MIMO with QPSK. In each figure,
there are two groups of plots: one for slow fading (with 1/2-rate
LDPC) and one for fast fading (with 1/3-rate BIC). The shown per-
formance curves are: (i) dashed curves for the SUMIS method with
ns = 1, 2, 3 spanning from right to left and (ii) solid curves for the
optimal method and the PM method with ns = r + 1 = 3.

4.2. Results

We can observe in Fig. 1 that the SUMIS detector performs close to
the optimal soft detector. It outperforms the PM method, and it does
so at a much lower complexity. Note that the complexity of SUMIS
with ns = 3 is much lower than that of PM with ns = r + 1 = 3
even though the partitioned problem in (4) is of the same size. The
reason is that the PM method performs the ZF-DF procedure for each
summation term whereas the SUMIS method does not.

5. CONCLUSIONS

We have proposed a novel MIMO detection method that outperforms
today’s state-of-the-art detectors, runs at fixed-complexity, provides
a clear and well-defined tradeoff between computational complexity
and performance, and is highly parallelizable. The ideas behind it
are fundamentally simple and allow for very simple algorithmic im-
plementations. The proposed method has a complexity that is of the
same order of magnitude as the linear methods. It opens the door
for a whole new class of detectors that can be utilized in the future.
Several extensions, which did not fit within the scope of this paper,
can be made. One example is iterative decoding.
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