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ABSTRACT

Consider a unicast downlink beamforming optimization problem with
robust signal-to-interference-plus-noise ratio constraints to accoun-
t for non-perfect channel state information at the base station. The
convexity of the robust beamforming problem remains unknown. A
slightly conservative version of the robust beamforming problem is
thus studied herein as a compromise. It is in the form of a semi-
infinite second-order cone program (SOCP), and more importantly, it
possesses an equivalent and explicit convex reformulation, due to an
linear matrix inequality description of the cone of Lorentz-positive
maps. Hence the robust beamforming problem can be efficiently
solved by an optimization solver. The simulation results show that
the conservativeness of the robust form of semi-infinite SOCP is ap-
propriate in terms of problem feasibility rate and the average trans-
mission power.

Index Terms— Robust MISO downlink beamforming, semi-
infinite SOCP, Lorentz-positive map, SDP, imperfect CSI.

1. INTRODUCTION

In a multiuser communication system, beamforming techniques pro-
vide a powerful approach to transmit signals and yield higher spec-
trum efficiency and larger downlink capacity for the system. The
base station (BS) is equipped with multiple antennas, and the sig-
nals for different co-channel users are weighted; and the beamform-
ing vectors (the weights) are optimized to carry the transmissions
(see [1, 2]). A basic beamforming optimization problem formula-
tion is to minimize the transmission power while providing an ac-
ceptable quality-of-service (QoS) to each user, as well as keeping
tolerable interference around some other directions. In a uni-cast
downlink, the beamforming design problem can be solved by con-
vex optimization techniques, e.g., semidefinite programming (SDP)
relaxation (see [1, 2, 3, 4, 5]), assuming that the perfect channel s-
tate information (CSI) is available at the BS when optimizing the
beamvectors.

In practical situations, however, the available CSI contains errors
caused by estimation, limited channel state feedback quantization or
delays. Thus, the design of beamforming robust to CSI errors is of
great practical interest and has been recently considered in a large
number of references (e.g., for a multi-input single-output (MISO)
system, see [1, 6, 7, 8] and references therein). However, most of
the resulting robust downlink beamforming problems are inherently
non-convex and, consequently, no global optimality of an efficient
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solution can be guaranteed theoretically. Nonetheless, in [8], suffi-
cient conditions are presented to constrain some design parameters
so that the robust beamforming problem becomes convex, and in [7],
an ellipsoid method is proposed for a restricted (conservative) ver-
sion of the robust problem.

In this paper, we revisit the robust beamforming problems of [8]
and [7], and provide an equivalent and explicit convex reformulation
for the robust optimization problem considered in [7]. By doing so,
the derived reformulation appears elegant due to a profound result of
linear matrix inequality (LMI) description for a robust second-order
cone (SOC) constraint [9], and the implementation is much easier
since one can make use of existing optimization solvers, e.g., CVX.

2. PROBLEM FORMULATION

Consider a single-cell communication system with anN -antenna BS
serving M decentralized single-antenna receivers (users). The signal
transmitted at the BS is the vector x(t) =

∑M

m=1 wmsm(t), where
the information signal sm(t) ∈ C intended for receiver m is tempo-
rally white with zero mean and unit variance, and wm ∈ C

N is the
transmit beamforming vector for receiver m. The signal received by
user m is given by

ym(t) = h
H
mx(t) + nm(t) (1)

where hm ∈ C
N is the channel vector between BS and receiver m,

and nm(t) is the additive zero-mean noise with the variance of σ2
m.

The received signal-to-interference-plus-noise ratio (SINR) of user
m is given by

SINRm =
wH

mhmhH
mwm∑M

i=1,i�=m
wH

i hmhH
mwi + σ2

m

, (2)

which is measure for QoS. The downlink beamforming problem with
perfect CSI is formulated as (cf. [6]):

minimize
{wm}

∑M

m=1 w
H
mwm

subject to
wH

mhmhH
mwm∑M

i=1,i�=m
wH

i hmhH
mwi + σ2

m

≥ γm, ∀m,

(3)
where γm > 0 is the minimal acceptable SINR for user m. It is
known that Problem (3) amounts to a second-order cone program
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(SOCP) as follows and thus can be solved efficiently:

minimize
{wm}

∑M

m=1 w
H
mwm

subject to 1√
γm

�(hH
mwm) ≥√∑M

i=1,i�=m
wH

i hmhH
mwi + σ2

m, m = 1, . . . ,M.

(4)
In the case that the CSI is not perfectly known at the transmitter,

we model the m-th user’s uncertain channel as hm = h̄m + δm

where h̄m is the nominal channel vector and δm is the perturbation
(channel estimation error) norm-bounded by εm (namely ‖δm‖ ≤
εm). Accordingly, the worst-case beamforming design problem is
the following robust optimization problem (cf. [8]):

minimize
{wm}

∑M

m=1 w
H
mwm

subject to
wH

m(h̄m + δm)(h̄m + δm)Hwm∑M

i=1,i�=m
wH

i (h̄m + δm)(h̄m + δm)Hwi + σ2
m

≥ γm, ∀‖δm‖ ≤ εm, m = 1, . . . ,M.
(5)

It is shown in [8] that when the perturbation bounds εm are small to
some extend, the conventional SDP relaxation (cf. (Pε) in [8]) of
(5) is tight. However, it remains to be understood whether (5) has an
equivalent convex reformulation in a general case, notwithstanding
existing numerical simulations showing that the SDP relaxation al-
ways gives a rank-one optimal solution with some certain data sets.
Another interesting beamforming problem formulation is the robust
extension of (4):

minimize
{wm}

∑M

m=1 w
H
mwm

subject to 1√
γm

�((h̄m + δm)Hwm) ≥√∑M

i=1,i�=m wH
i (h̄m + δm)(h̄m + δm)Hwi + σ2

m,

∀‖δm‖ ≤ εm, m = 1, . . . ,M.
(6)

Note that the feasible set of (5) contains that of (6), and thus the
latter one is more conservative than the former. Observe that (6) is
a semi-infinite SOCP and hence convex, which does not necessarily
mean that it can be solved efficiently with an existing solver.

In [7], the authors present an iterative ellipsoidal method for (6)
and show its polynomial-time computational complexity (see also
[10]). In contrast, we herein show that Problem (6) possesses an e-
quivalent convex LMI reformulation by resorting to a result in [9],
and thus can be solved efficiently, and in practice can be implement-
ed easily using an optimization solver, e.g., SeDuMi [11].

3. EQUIVALENT CONVEX REFORMULATION FOR THE
ROBUST BEAMFORMING PROBLEM (6)

3.1. A Standard Form of Semi-Infinite SOCP for (6)

In this section, we will present an equivalent convex reformulation of
Problem (6), resorting to a result on LMI description of a robust SOC
constraint in [9] (rather than S-lemma). To start with, let us rewrite
(6) into a problem with real-valued design variables. We denote the
real and imaginary parts ofwm = �wm+j�wm ∈ C

N as follows:

wm1 = �wm, wm2 = �wm, m = 1, . . . ,M, (7)

and clearly wm1 ∈ R
N and wm2 ∈ R

N . Likewise, h̄m1, h̄m2,
δm1, δm2 are defined such that h̄m = h̄m1 + jh̄m2 and δm =
δm1 + jδm2 respectively. Denote

W−m,1 = [w11 · · · wm−1,1 wm+1,1 · · · wM1], (8)

and W−m,2 and W−m are defined analogously. Therefore, by let-
ting

C
T
m(wm,W−m) =

[
1√
γm

wm1 W−m,1 W−m,2 0

1√
γm

wm2 W−m,2 −W−m,1 0

]
(9)

of size 2N × 2M and

c
T
m(wm,W−m) = [h̄

T
m1 h̄

T
m2]C

T
m(wm,W−m) + [0 · · · 0 σm]

(10)
of length 2M , we express Problem (6) into the following real-valued
optimization problem.

minimize
{wm}, t

t

subject to [twT
11 wT

12 · · · wT
M1 wT

M2]
T ∈ L

2MN+1,

Cm(wm,W−m)

[
δm1

δm2

]
+ cm(wm,W−m) ∈ L

2M ,

∀

∥∥∥∥[ δm1

δm2

]∥∥∥∥ ≤ εm,m = 1, . . . ,M,

(11)
where LK represents the K-dimensional SOC:

L
K = {x ∈ R

K | x1 ≥
√

x2
2 + · · ·+ x2

K}. (12)

Note that Cm(wm,W−m) and cm(wm,W−m) are affine with
respect to (w.r.t.) {wm}, and that the optimal value of (11) is the
square root of that of (6).

To simplify the notations, we write (9)-(10) respectively into
Cm and cm in what follows. Let us denote

Bm = [cm εmCm], (13)

keeping in mind that Bm is indeed Bm(wm,W−m) affine w.r.t.
the design variables. By the notation (13) and letting δ′

m =
[αm, δT

m1, δ
T
m2]

T ∈ R
2N+1, we have another equivalent reformu-

lation of (11) (or (6)):

minimize
{wm}, t

t

subject to [twT
11 wT

12 · · · wT
M1 wT

M2]
T ∈ L

2MN+1,
Bm(wm,W−m)δ′

m ∈ L
2M , ∀ δ′

m ∈ L
2N+1,

m = 1, . . . ,M.
(14)

In order to solve (14), let us consider the second set of constraints,
i.e., the robust SOC constraints. Define the set{

Bm ∈ R
2M×(2N+1)

∣∣∣Bmym ∈ L
2M , ∀ym ∈ L

2N+1
}
.

(15)
The set (15) contains linear maps (or matrices) that take L

2N+1 to
L

2M .

Lemma 3.1 The set (15) is equivalent to the matrices Bm being
Lorentz-positive, i.e.,

x
T
mBmym ≥ 0, ∀xm ∈ L

2M , ∀ym ∈ L
2N+1.

The set (15) of all Lorentz-positive matrices forms a closed con-
vex cone, and the cone has an LMI description, as shown in [9, The-
orem 5.6]. Having such a description of (15), we can claim that (14)
has an equivalent convex (or linear conic program) reformulation. In
order to present the theorem and reformulate it in an implementable
way, we need some basic notions and facts to be introduced.
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3.2. An LMI Characterization of the Cone of Lorentz-Positive
Maps

Let SN and AN be the sets of all N × N symmetric matrices and
the set of all N × N skew-symmetric matrices, respectively, and
LL,K stand for the KL(K +1)(L+1)/4-dimensional linear space
of biquadratic forms (cf. [12, p. 1148]) LL,K =⎧⎪⎨⎪⎩M =

⎡⎢⎣ M11 · · · M1L

...
. . .

...
ML1 · · · MLL

⎤⎥⎦ ∈ SKL
∣∣∣M ln = M

T
ln

⎫⎪⎬⎪⎭ .

(16)
It is a subspace of SKL, and the orthogonal complement of it within
SKL is clearly theKL(K−1)(L−1)/4-dimensional spaceL⊥

L,K =⎧⎪⎨⎪⎩M =

⎡⎢⎣ M11 · · · M1L

...
. . .

...
ML1 · · · MLL

⎤⎥⎦ ∈ SKL
∣∣∣M ln = −M

T
ln

⎫⎪⎬⎪⎭ .

(17)
That is, SKL = LL,K ⊕ L⊥

L,K . By the notations, it is immediately
seen that SL

+ ⊗ SK
+ ⊆ LL,K and

AL ⊗AK ⊆ L⊥
L,K . (18)

Let G ∈ R
L×K and GT = [g1 · · · gL] (namely, gT

l ∈ R
K

is the l-th row of G). Given a vector a = [a1, . . . , aK ]T (with
K ≥ 3), we denote by A(a) the arrow matrix generated by a:

A(a) =

⎡⎢⎢⎢⎢⎢⎣
a1 + a2 a3 a4 · · · aK

a3 a1 − a2 0 · · · 0
a4 0 a1 − a2 · · · 0
...

...
...

. . .
...

aK 0 0 · · · a1 − a2

⎤⎥⎥⎥⎥⎥⎦ ∈ SK−1

(19)
and by Â(G) the arrow matrix generated by the L arrow matrices
[A(g1), . . . ,A(gL)] (with L ≥ 3), namely,

Â(G) =

⎡⎢⎢⎢⎢⎢⎣
A(g0) A(g3) A(g4) · · · A(gL)
A(g3) A(g−1) 0 · · · 0

A(g4) 0 A(g−1) · · · 0

...
...

...
. . .

...
A(gL) 0 0 · · · A(g−1)

⎤⎥⎥⎥⎥⎥⎦
(20)

in S(K−1)(L−1), where g0 = g1 + g2 and g−1 = g1 − g2. It is

clear that Â(G) is matrix Â(abT ) with element albk substituted by
Glk, where b ∈ R

L is given (cf. [10, page 95]).
With the above notations in hand, we cite the theorem ([9, The-

orem 5.6]) as the following lemma, albeit written in a different way.

Lemma 3.2 Suppose that min{L,K} ≥ 3. Then a matrix G ∈
R

L×K is Lorentz-positive, if and only if there isX ∈ AL−1⊗AK−1

such that
Â(G) +X � 0 (∈ S

(K−1)(L−1)
+ ), (21)

where Â(·) is defined in (20).

By exploiting the notation (17), relationship (18), and Theorem
3.1 in [9], one can easily reformulate Lemma 3.2 into an easily im-
plementable proposition as follows.

Proposition 3.3 Suppose that min{L,K} ≥ 3. Then a matrix G ∈
R

L×K is Lorentz-positive, if and only if

Â(G) ∈ S
(K−1)(L−1)
+ + L⊥

L−1,K−1. (22)

3.3. Equivalent Convex Reformulation of Problem (6)

Capitalizing on Proposition 3.3, we can derive an equivalent con-
dition for Bm complying with (15). In other words, Bm belong-
ing to set (15) is tantamount to the condition that there is Xm ∈
L⊥

2M−1,2N such that

Â(Bm) +Xm ∈ S
2(2M−1)N
+ .

Considering that the robust beamforming problem (6) amounts to
(14), we obtain an identical form of linear conic program (cf. [10])
for (6) and summarize it as follows.

Proposition 3.4 The robust MISO downlink beamforming problem
(6) is equivalent to the following linear conic program:

minimize
{wm,Xm}, t

t

subject to [t wT
11 wT

12 · · · wT
M1 wT

M2]
T ∈ L

2MN+1,

Â(Bm(wm,W−m)) +Xm � 0, m = 1, . . . ,M,
Xm ∈ L⊥

2M−1,2N .
(23)

We remark that Bm(wm,W−m) = [cm εmCm] ∈

R
2M×(2N+1) is affine w.r.t. the design variables {wm}, and hence

so is Â(Bm(wm,W−m)).

4. NUMERICAL EXAMPLES

We consider a simulated scenario with an N -antenna BS serving
three single-antenna users (M = 3). The elements of the chan-
nel vectors (h̄1, h̄2, h̄3) are the i.i.d. standard complex Gaussian
variables. The noise variance is set σ2

m = 0.1 for each user, and
the SINR threshold value for the users is set to a common 12 d-
B. The bound of the error norm is assigned εm = ε‖h̄m‖ for user

m (namely, ε ≥
‖δm‖

‖h̄m‖
is the percentage of the maximal norm of

CSI error out of the norm of the channel). We compare the perfor-
mance of the SDP relaxation problem (cf. (Pε) in [8]) of (5), i.e.,
a benchmark, and the performance of the convex equivalent refor-
mulation (23) of semi-infinite SOCP (6). The two convex problems
(i.e., (Pε) in [8] and (23)) are termed “SDR” and “Robust-SOCP”
respectively in the following figures. We run simulations for the
scenarios with different N ∈ {3, 4, 5}, and for a given N , 2000
sets of channel realizations are generated, and for each set of chan-
nel realization, both the convex problems are solved respectively for
ε ∈ {0.02, 0.04, 0.06, 0.08, 0.10, 0.12}, and all results are averaged
over the 2000 simulation runs.

Fig. 1 shows the problem feasibility rate versus the relative per-
turbation bound ε for different values of N . As we can see, the
feasibility rate of the SDP relaxation problem is only slightly higher
than that of (23), and this behavior coincides with the fact that (6)
is a more conservative (but convex) form, but not excessively so as
demonstrated. It is observed that the feasibility rate increases when
the number of transmit antenna N increases, and that the feasibility
rate decreases when the perturbation bound ε increases.

Figs. 2 and 3 display the average transmission power versus the
error norm bound ε for the scenarios of the various N . Particularly,
in Fig. 2, the transmission power by the SDP relaxation method is
averaged over all channel realizations where only the SDP (Pε) in
[8] is feasible, while in Fig. 3 the transmission power is averaged
over all channels where both the two convex problems ((Pε) in [8]
and (23)) are feasible. The average transmission power by (23) in the
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Fig. 1. Feasibility rate versus the perturbation bound ε for different
values of transmit antennas N (M = 3 users).

both figures is taken over the channels where it is feasible. As ex-
pected, the higher transmission power is required to meet the robust
QoS constraints for the larger bound ε of uncertainty, as well as for
less transmit antennas. From the simulations results, it is clear that
the more conservative model in (6) is sufficiently tight in practice.
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Fig. 2. Average transmission power versus the perturbation bound ε
for different values of N (M = 3 users). (Average over the channels
where the SDP is feasible.)

5. CONCLUSIONS

In a uni-cast MISO transmission system, we have considered the
robust downlink beamforming problem, which minimizes the total
transmission power subject to the worst-case SINR constraints. Giv-
en that the convexity of the robust beamforming problem remains
unknown, we have presented an equivalent and explicit convex re-
formulation for the more conservative robust problem in the form of
a semi-infinite SOCP. The optimization tool we utilized is the ex-
act LMI description of the cone of Lorentz-positive matrices, and
the derived problem reformulation is a standard form of linear conic
program and thus can be numerically implemented in a convenien-
t fashion. The numerical performance shows the conservativeness
of the semi-infinite SOCP formulation is present, but not overly con-
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Fig. 3. Average transmission power versus the perturbation bound ε
for different values of N (M = 3 users). (Average over the channels
where both the SDP and (23) are feasible.)

servative, comparing the SDP relaxation of the original robust MISO
downlink beamforming problem.
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