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ABSTRACT
In this work, we develop limited feedback techniques that utilize

both Channel State Information (CSI) and Channel Distribution

Information (CDI) for communication in multiuser MIMO beam-

forming networks with SINR constraints on the links. We minimize

power in the network using a CDI-based algorithm, and then use

limited CSI feedback to improve on this scheme by reducing power

consumption further and transmit opportunistically. We study three

cases of the CSI feedback channel–with one bit of bandwidth,

with infinite bits, and with B bits. We develop feedback techniques

for the one-bit and infinite-bit cases, and then derive the optimal

quantizer for the B-bit case. Our results show that significant power

reduction can be achieved using a small number of bits.

Index Terms— covariance feedback, beamformers, multiuser

MIMO, outage probability, Channel Distribution Information

I. INTRODUCTION

Multiuser MIMO (MU-MIMO) networks are increasingly pop-

ular in communications systems today to increase capacity and

combat interference. To fully exploit the advantages of MIMO, full

CSI of all nodes in the network is required [1]. This information

can be difficult to measure and attain. While receivers are generally

able to measure the channel from its corresponding transmitter

using training sequences, estimating the channel of the interfering

transmitters is more difficult. In addition, feeding back full CSI to

the transmitter is expensive.

Due to these difficulties, much work has been done to reduce

feedback to the transmitter (for example, [2],[3]). One method

to reduce feedback is to utilize statistical information about the

channel, or Channel Distribution Information (CDI) [4]-[8]. CDI

changes less frequently than CSI. Thus, schemes based on CDI

require significantly less feedback. However, schemes based on CDI

use more power or achieve less capacity as compared to their CSI

counterparts. Thus, systems that use limited CSI in conjunction

with CDI are desired to keep feedback low while approaching the

performance of perfect CSI of the network.

In this work, we build on our CDI framework from [8] by

adding limited, decentralized CSI feedback for scheduling and

power reduction. In [8], algorithms for joint beamforming and

power control are developed to meet an SINR threshold for each

user while minimizing power. Since only statistical information is

used, the algorithms are designed to meet some outage requirement
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for each user. This outage is undesirable, and CSI feedback to

the transmitter can be used to combat outage. Since the receiver

can measure the instantaneous SINR on its link, it can inform

the transmitter to adjust its power accordingly. If the SINR is

above the desired threshold, the transmitter can reduce its power

to meet the threshold. However, if the SINR is below the desired

threshold, then the transmitter should not transmit and wait for

channel conditions to be more favorable. If the transmitter increases

its power, then interference to other users is increased and those

users may no longer be able to meet their SINR requirements. Thus,

the transmitter decides whether or not to decrease its power or to

not transmit at all.

Feeding back the SINR from the receiver to the transmitter can

be expensive and take up significant bandwidth. Taking this into

consideration, we develop an optimal thresholding scheme using B
bits of feedback. Section II discusses the problem setup. Section

III studies two extreme cases followed by a derivation of the set

of equations to be solved for using B bits of feedback. Section IV

discusses the results, and Section V discusses further improvements

that can be made to this scheme.

II. PROBLEM FORMULATION

II-A. System Model
This work considers time-varying MIMO channels for multiple

users in a network. Consider a MIMO network with L transmit-

receive pairs. At link l, the transmitter sends the symbol sl(t) to the

receiver. The transmitter uses unit-norm beamforming vector vl(t)
to precode the signal and transmits with power pl(t). The receiver

employs the linear unit-norm beamformer ul(t) to combine the

signal. The channel from transmitter i to receiver l is given by

Hli(t). The noise Nl(t) is distributed as a complex circular Gaus-

sian, and represents the combined noise after applying the receive

beamforming vector to the incoming signal. The lth received signal

is thus given by

rl(t) =
√

pl(t)[u
H
l (t)Hll(t)vl(t)]sl(t) +Nl(t)

+
L∑
i �=l

√
pi(t)[u

H
l (t)Hli(t)vi(t)]si(t)

In schemes that use perfect CSI, a block-fading model is as-

sumed, so the channel stays constant over each block. Then, for

notational convenience, the time variable will be dropped for the

channel, power allocations, and beamformers. To further simplify

notation, define Gli = |uH
l Hlivi|2 as the beamforming channel

gain from the transmitter on link i to the receiver at link l and σ2
Nl
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as the noise power for the lth link. Then, under this model, the

SINR Γl on each link can be shown to be

Γl =
plGll∑

i �=l piGli + σ2
Nl

(1)

If perfect CSI is available, to ensure a reliable link is available

to all nodes in the network, each link has an SINR constraint:

Γl must be greater than a threshold γl. The goal is then to

minimize the power consumed by the network while meeting all

the SINR constraints. The cost function considered in this work is

the weighted sum power. In this setup, each link l in the network

incurs some cost wl > 0 to transmit across its link. An example

of a network with varying power costs on the links are networks

with varying battery life at the transmitters. For minimizing non-

weighted sum power, wl = 1 for l = 1, . . . , L.

To compact notation, define the weighting and power vectors

as w = {w1, . . . , wL} and p = {p1, . . . , pL}, respectively. The

beamforming matrices are defined as U = {u1, . . . ,uL} and V =
{v1, . . . ,vL}. The optimization problem for having perfect CSI

can then be stated as follows:

min
p≥0,U,V

wTp

s.t. Γl ≥ γl,l = 1, . . . , L (2)

For a fixed set of channel matrices Hli’s, this problem can be

solved and will give a set of power allocations and beamformers for

the transmitters and receivers in the network [1]. Then, for every

change in the Hli’s, all the transmit and receive beamformers must

be updated, and the power allocation scheme changes. In many

networks, the feedback required for these changes in the channel is

unrealistic due to rapidly-varying CSI. Thus, this work considers a

network where full CDI is available, but full instantaneous CSI

is unavailable. All the links are assumed to undergo correlated

Rayleigh fading. Then, when only CDI is known, the exact Hli’s

are not known–instead, they are assumed to be a random variable

drawn from a complex-normal distribution:

vec(Hli) ∼ CN(0,Σli)

The channel covariance matrices, given by the Σ′
lis, comprise the

CDI of the network. This work will consider the case where the

channel varies, but the statistics stay constant. Under this model,

the expression for SINR given in (1) becomes a random variable

since it depends on the channel. The constraints in (2) can then no

longer be written as the SINR on link l always exceeding some

threshold γl–since the SINR is now random, it will drop below γl
with some probability. Therefore, these absolute constraints change

to outage constraints, and links are allowed to have an SINR

below their thresholds for specified probabilities. Mathematically,

the constraint on link l in (2) becomes Pr(Γl ≤ γl) ≤ αl, where αl

is the probability that the link is in outage. The main optimization

problem using CDI can then be formulated:

min
p≥0,U,V

wTp

s.t. Pr(Γl ≤ γl) ≤ αl, l = 1, . . . , L (3)

This problem was studied in [8]. There are two main drawbacks

of this solution versus the CSI solution. First, the outage αl on

the links is undesirable, and second, the power for a given set

of channel matrices at any time may be higher than required to

meet the SINR thresholds. Thus, in this work we use limited SINR

feedback to address these two issues and improve on the CDI

solution. Since the receiver can measure its channel, it is no longer

limited to using the receive beamforming vector obtained from the

CDI-based algorithm and can measure its SINR to feed back to

the transmitter. The beamformer used here at the receiver is the

LMMSE beamformer.

III. THREE CASES OF SINR FEEDBACK
First, we will consider two extremes of SINR feedback. Then

we will study the general case of B bits of feedback.

III-A. Using 1 Bit of Feedback
With 1 bit of feedback, the receiver can inform the transmitter

whether or not to transmit based on the channel conditions. Thus if

the channel conditions are not favorable, instead of transmitting and

having outage, the transmitter will send its data when the channel

conditions get better based on feedback from the receiver. The lth

receiver at time t can measure the instantaneous SINR Γl(t). If the

SINR is greater than γl (when Γl(t) ≥ γl), then the receiver sends

back a 1; otherwise, the receiver sends back a 0 (when Γl(t) < γl).
If the transmitter gets a 1, it transmits data at the original power

level given by the CDI-based algorithm. Otherwise, if it receives a

0, it stays silent until channel conditions change again. This scheme

of the transmitter staying silent when a 0 is received will also be

utilized when feeding back B bits. However, if more than 1 bit

is available on the feedback channel, the receiver can inform the

transmitter to reduce its power.

III-B. Using Infinite Bits of Feedback
With infinite bits of feedback, the receiver can send the trans-

mitter the exact instantaneous SINR Γl(t). If Γl(t) < γl, then

the transmitter will stay silent, as with the 1-bit feedback case.

If the transmitter tried to boost the power to meet the SINR

threshold, then interference would be increased to other users

and they may not be able to meet their own SINR requirements.

However, if Γl(t) ≥ γl, then the transmitter can rescale the power

accordingly to meet the SINR threshold exactly and save power.

Since Γl(t) = plGll(t)∑
i �=l piGli(t)+σ2

Nl

, Γl(t) ∝ pl. The new SINR

should meet meet the target SINR γl. Therefore, the new power

used at time t by transmitter l, pl(t), is given by

pl(t) =
γl

Γl(t)
pl

Note that this update equation for the power assumes that all the

other interfering powers do not change. While this is not an ideal

assumption, due to the restrictions being placed on the system, the

interference will not rise, and so the SINR requirement γl will be

met.

III-C. Using B Bits of Feedback
In using B bits of feedback, ideas from the two extreme cases

will be combined. When the SINR at user l, Γl(t), is below the

threshold γl, 0 will be fed back and the transmitter will not transmit.

However, when Γl(t) is above the threshold γl, the transmitter

will reduce its power depending on the region that Γl(t) falls in.

Take for example B = 2 bits of feedback, and a set of thresholds

γl = γ
(0)
l < γ

(1)
l < γ

(2)
l . If Γl(t) < γ

(0)
l , 0 is sent back. If

γl ≤ Γl(t) < γ
(1)
l , 1 is sent back, and the power is not reduced.

If γ
(1)
l ≤ Γl(t) < γ

(2)
l , 2 is sent back, and the power at the
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transmitter is updated as pl(t) = γl

γ
(1)
l

pl. This power reduction is

guaranteed to meet the SINR threshold γl, since Γl(t) ≥ γ
(1)
l . If

γ
(2)
l ≤ Γl(t), 3 is sent back, and the power at the transmitter is

updated as pl(t) =
γl

γ
(2)
l

pl, with similar reasoning as before. This

scheme can be extended to an arbitrary number of bits–the SINR

is scaled according to the lower bound on the region.

For the previously described scheme, the thresholds γ
(i)
l must

be determined. For notational convenience, the user subscript l will

be dropped for this discussion, as this process must be applied for

each user. Also, define p(i) and γ(i) to be the power transmitted

and the SINR value assumed, respectively, when the value i+1 is

fed back. In this notation, note that p(0) = p, the original power

transmitted. Over time, the average power used by the transmitter

will be minimized, so the optimization problem is

min
γ(i),i=1...2B−2

E[p(t)] (4)

The objective function E[p(t)] is given by

E[p(t)] =

2B−2∑
i=0

Pr(p(i))p(i)

As indicated in the above example for B = 2, p(i) = γ

γ(i) p
(0).

Also, recall that the statistical information of the channels is known,

so Pr(p(i)) can be calculated from the CDF of the SINR. This

expression is given by Pr(p(i)) = F (γ(i+1)) − F (γ(i)), where

F (γ) = Pr(Γ ≤ γ). Also, define γ(2B−1) = ∞ and therefore

F (γ(2B−1)) = 1 for notational convenience. Thus, the optimization

problem in (4) can now be written as

min
γ(i),i=1...2B−2

2B−2∑
i=0

(
F (γ(i+1))− F (γ(i))

) γ

γ(i)
p(0) =

min
γ(i),i=1...2B−2

γp(0)

⎛
⎝2B−2∑

i=0

F (γ(i+1))− F (γ(i))

γ(i)

⎞
⎠ (5)

To solve the problem in (5), the following theorem is useful:

Theorem 1: If F (γ) is a continuous differentiable function, then

the problem in (5) has a unique global minimum solution.

Proof: This will be proved using partial derivatives and setting them

equal to 0. Note that an underlying condition to this optimization

problem is γ(1) < γ(2) < . . . < γ(2B−2) < γ(2B−1) = ∞.

Therefore, from the assumptions on F (γ), F (γ(1)) < F (γ(2)) <

. . . < F (γ(2B−2)) < F (γ(2B−1)) = 1. The goal is to check if

these conditions are inherently satisfied when the partial derivatives

are taken. If they are, then the set of 2B − 2 variables and 2B − 2
equations can be solved to yield the optimal solution.

Since γp(0) is a constant with respect to the objective function,

it will be ignored as it has no impact on the solution. Let F ′(γ) be

the derivative of F (γ). The partial derivative with respect to γ(i)

is given by

∂

∂γ(i)
E[p(t)] =

∂

∂γ(i)

⎛
⎝2B−2∑

i=0

F (γ(i+1))− F (γ(i))

γ(i)

⎞
⎠

=
∂

∂γ(i)

(
F (γ(i+1))

γ(i)
− F (γ(i))

γ(i)
+

F (γ(i))

γ(i−1)

)

= −F (γ(i+1))

(γ(i))2
− F ′(γ(i))

γ(i)
+

F (γ(i))

(γ(i))2
+

F ′(γ(i))

γ(i−1)

Consider i = 2B − 2. Taking the partial and setting it equal to 0

gives

−F (γ(2B−1))

(γ(2B−2))2
− F ′(γ(2B−2))

γ(2B−2)
+

F (γ(2B−2))

(γ(2B−2))2
+

F ′(γ(2B−2))

γ(2B−3)
=

− 1

(γ(2B−2))2
− F ′(γ(2B−2))

γ(2B−2)
+

F (γ(2B−2))

(γ(2B−2))2
+

F ′(γ(2B−2))

γ(2B−3)
= 0

Solving for γ(2B−3) gives

γ(2B−3) =
F ′(γ(2B−2))γ(2B−2)

F ′(γ(2B−2))γ(2B−2) + 1− F (γ(2B−2))
γ(2B−2)

Now show that γ(2B−3) < γ(2B−2), which is equivalent to showing

F ′(γ(2B−2))γ(2B−2)

F ′(γ(2B−2))γ(2B−2) + 1− F (γ(2B−2))
< 1 (6)

Since the term F ′(γ(2B−2))γ(2B−2) appears in the numerator and

denominator of the fraction in (6), it will suffice to show 1 −
F (γ(2B−2)) > 0. Since F (γ(2B−2)) < 1 (otherwise γ(2B−2) =
∞), this statement is true. Thus, the solution to the equation for

the partial derivative when i = 2B − 2 is satisfied only when

γ(2B−3) < γ(2B−2).

Now, consider again the partial with respect to γ(i) and set it

equal to 0. Solving for γ(i−1) gives

γ(i−1) =
F ′(γ(i))γ(i)

F ′(γ(i))γ(i) + F (γ(i+1))− F (γ(i))
γ(i)

(7)

Assume γ(i+1) > γ(i). Then, F (γ(i+1)) − F (γ(i)) is positive

since F is a monotonically increasing function. Then, by the same

arguments given for (6), γ(i−1) < γ(i). The assumption that

γ(i+1) > γ(i) is satisfied since γ(2B−2) > γ(2B−3), and therefore

by the previous argument this assumption will always hold true.

Therefore, γ(i+1) > γ(i) ∀i. Thus, by solving the partial derivative

equations, the underlying condition for the problem is satisfied.

These equations are linearly independent since the terms (γ(i))2

and F ′(γ(i)) only appear in the ith equation. Since there are 2B−2
equations and 2B−2 variables, the globally optimal solution to (5)

will be given by solving these equations. Furthermore, this solution

is a minimum since the boundary cases of all γ(i) = γ(0) or all

γ(i) = ∞ would lead to no power reduction since none of the

thresholds would be used to scale the original power. Any solution

not at these boundaries would include some power reduction, and

so solving the set of partial derivative equations will yield a global

minimum.

�

Using Theorem 1, a set of equations is given to satisfy the

optimal thresholds γ(i) to minimize the average power usage of the

system. Currently, these equations are being solved using numerical

optimization since the functions are complex. Efficient solving of

these equations is still an open problem.

IV. RESULTS
To test this feedback scheme, we study the performance of a

single-user MIMO system as well as a 3-user MU-MIMO system.

The covariance matrices are generated from the angular spread

model [9] and the system is run over 10000 channel matrices. First,

the CDI algorithm from [8] is run on the covariance matrices, and
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Fig. 1. Single-User Feedback at 20% Outage

then the CSI feedback scheme discussed in Section III is run when

the channel changes.

The results for single-user MIMO are shown in Fig. 1. The CDI

algorithm here gives lower power consumption than the CSI case,

but is in outage 20% of the time. Using 2 bits of CSI feedback saves

significant power as compared to the other two schemes. There is

about a 7dB savings over the CSI case and 5dB savings over the

CDI case with no CSI feedback. The reason for these savings is that

the transmitter does not transmit when channel conditions are bad

(which raises the CSI curve), but reduces power when the channel

conditions are good. While the power consumption is lower than

the CSI case on average, the throughput is also 20% lower for the

CDI schemes since the transmitter is not sending data 20% of the

time.

We also test the multiuser case with 3 transmit-receive pairs in

Fig. 2. For the multiuser case, we see similar trends, but the savings

are even more significant for 2 bits of feedback–about 6dB lower

than the CSI curve and about 5dB lower compared to the CDI

algorithm with no feedback. If we have infinite bits of feedback

for the SINR so the SINR is perfectly known at the transmitter, the

power savings are about 7.5dB as compared to the CSI curve. Once

again, there is about a 20% throughput loss as compared to the CSI

case. To make the comparison more fair, the dotted curve represents

the CSI-based scheme only when the transmitter transmits using

the CDI scheme with limited CSI feedback. The throughput for

this scheme is the same as the CDI cases. The CSI curve is lower,

as expected, but at low SINR thresholds the difference is small.

At higher SINR thresholds, the difference becomes more apparent.

These plots show that this type CSI of power reduction can lead

to significant savings using very limited feedback in the system.

V. CONCLUSION
In this work, we utilize limited CSI feedback to improve on

a CDI-based algorithm for MU-MIMO beamforming networks

with SINR requirements. By using low-rate SINR feedback from

the receiver to its corresponding transmitter, we show that lower

power consumption can be achieved in the network while not

wasting power when the SINR requirement is not met. The scheme

presented here is also decentralized. While this CSI-based scheme

has many advantages to improve on the CDI solution, further

improvements can be made with multiple-stage feedback and more

Fig. 2. Multiuser Feedback for 3-User System at 20% Outage

aggressive power control. The power reduction invoked by this

scheme lowers the interference profile to other users. This means

that other users can potentially raise their power slightly while still

meeting the SINR requirements for the other users. This is the

subject of future research.
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