
TEACHING AND RESEARCH IN FPGA BASED DIGITAL SIGNAL
PROCESSING USING XILINX SYSTEM GENERATOR

Shahrukh Athar Member IEEE, Muhammad Ali Siddiqi and Shahid Masud Senior Member IEEE

Department of Electrical Engineering,

Lahore University of Management Sciences,
Sector-U, D.H.A., Lahore 54792, Pakistan

E-mail: {shahrukh.athar, muhammad.siddiqi, smasud} @lums.edu.pk

ABSTRACT

This paper presents an efficient approach for the
implementation of typical DSP structures studied in class or
conceived during research. This scheme is beneficial where
the objective is to implement the physical working of
complex DSP structures or algorithms without requiring
detailed knowledge of hardware design and hardware
description languages. The approach is based on the Xilinx
System Generator for DSP tool, which integrates itself with
the MATLAB based Simulink Graphics environment and
relieves the user of the textual HDL programming. In
addition to introducing this scheme for teaching of DSP,
some useful examples based on Delta Sigma Modulators are
also presented. These modulators are selected because they
are an integral part of modern Analog to Digital Converters
and encompass many important Signal Processing concepts.
The advantage of this approach in DSP research in terms of
reducing concept-to-Silicon design time and effort is also
highlighted.

Index Terms— System Generator for DSP, FPGA,
Delta Sigma Modulators

1. INTRODUCTION

The fastest and efficient way to implement a Digital Signal
Processing (DSP) algorithm is by designing an Application
Specific Integrated Circuit (ASIC). However, ASICs are not
reconfigurable and are cost effective only if developed in
large enough numbers. Programmable chips offer an
immediate benefit in that they are reusable and thus save
Silicon and associated ASIC design time. DSP
microprocessors form one such class of reusable chips. They
have a fixed chip level architecture and DSP algorithms are
implemented on them by writing code in the appropriate
high level or assembly language. DSP applications are
highly parallel in nature and this poses performance
constraints on DSP microprocessors. Although DSP
microprocessors incorporate parallel hardware and

pipelining, they still have unique architectures which cater
for various DSP algorithms requiring different levels of
parallelism. Field Programmable Gate Array (FPGA)
technology allows for reconfiguring at the hardware level
and thus they do not encounter the constraints suffered by
DSP microprocessors. Using FPGAs, customized hardware
can be built for various DSP algorithms. This results in area
efficient and low power DSP solutions [1].

DSP courses, taught at many universities, have an
effective demonstration and laboratory component. Some
universities even have a separate course on DSP laboratory.
Mostly DSP microprocessor based boards are used in these
demonstrations and lab exercises such as [2, 3]. Working
with FPGA boards at a lower level of abstraction requires
pre-requisite knowledge of Digital System Design and
Hardware Description Languages (HDLs) such as Verilog or
VHDL. In the diverse Electrical Engineering curriculum as
prevalent these days, students taking a DSP course may not
have this HDL knowledge. This has hindered the use of
FPGA boards as development platforms in DSP courses [4].
Similarly, DSP researchers who lack the requisite
knowledge about HDLs seldom use FPGAs as platforms for
conducting research.

The availability of FPGA design tools that work at a
higher level of abstraction allow users to work with FPGAs
without detailed knowledge of HDLs. One such tool is the
LabVIEW FPGA. The use of this tool in DSP teaching is
discussed in [4]. Another tool that also works at a higher
level of abstraction and is conducive for those having prior
knowledge of MATLAB and Simulink is the Xilinx System
Generator for DSP. A basic DSP design methodology using
this tool has been presented in [5]. In this paper we propose
the use of the System Generator tool for FPGA
implementation in DSP teaching and research by using Delta
Sigma (ΔΣ) Modulators as examples.

The rest of the paper is organized in the following
manner. Section-2 gives a brief introduction to ΔΣ
Modulators. Section-3 describes the Xilinx System
Generator for DSP in some detail. Section-4 elaborates the
use of System Generator in DSP Teaching while Section-5

2765978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

describes the use of this tool in conducting DSP research.
Section-6 concludes this discussion.

2. BRIEF INTRODUCTION TO DELTA SIGMA
MODULATION

ΔΣ Converters encompass many crucial signal processing
concepts such as sampling and quantization, feedback loops,
multiple order structures, effects of oversampling, noise
shaping, word length growth, sum accumulation, etc. They
have been presented as effective DSP teaching tools in [6].
We will use the example of FPGA implementation of ΔΣ
Modulators in DSP teaching and research.

E(z)

__
W(z)X(z)

1z

++ +

1z

+

1z

+
V1(z) V2(z)

Figure 1: A 2nd Order ΔΣ Modulator

ΔΣ Modulators oversample an input signal thereby

reducing the overall noise floor and increasing the distance
between the spectral images of the signal. They use noise
shaping to push the quantization noise away from the band
of interest from where it can be removed by the use of an
appropriate filter. ΔΣ Modulators find widespread use in
Analog to Digital Converters, Digital to Analog Converters,
Frequency Synthesizers, etc. Detailed information on ΔΣ
Modulators can be found in [7, 8]. Figure 1 shows a 2nd
order ΔΣ Modulator (DSM2) which uses a 2nd order
accumulator by cascading two 1st order accumulators. The
order of the accumulator defines the order of the ΔΣ
Modulator. It uses a single bit quantizer which is represented
by a noise source E(z) in Figure 1. The implementation of
recursive DSP structures such as Figure 1 is considered
complex for hardware implementation. This paper presents a
quick top-down methodology that can capture such designs
with accuracy using the System Generator.

3. OVERVIEW OF THE XILINX SYSTEM
GENERATOR

The Xilinx System Generator for DSP is a system level
modeling and design tool that facilitates FPGA design and
has the ability to work at a higher level of abstraction [9]. It
enables the use of the MathWorks graphical model based
Simulink design environment for FPGA design. The System
Generator integrates itself with Simulink and FPGA designs
are captured by using the Xilinx specific blocksets. Thus,
designing a hardware model in Simulink is as simple as
designing any other Simulink model with the only difference
being the use of Xilinx blocksets instead of those found in

Simulink. The System Generator provides many DSP
building blocks in the form the Xilinx DSP blockset for the
Simulink environment. The variety in this blockset ranges
from common DSP blocks such as adders, multipliers,
registers etc to more complex blocks such as FFTs, filters,
memories, forward error correction etc [9]. Thus, previous
experience with low level system design and HDLs is not
required when using this tool. The System Generator uses
the Xilinx ISE software and IP core generators to convert a
designed model into the equivalent HDL code. The
remaining FPGA implementation steps including synthesis,
place and route, etc. are automatically performed to generate
a bit file that is downloaded on to the FPGA.

The System Generator can be used in different modes,
two of which are: (i) Hardware Emulation and (ii)
Hardware Co-Simulation. In Hardware Emulation mode, the
hardware model can be run on the computer as if it was
running on an FPGA and this can be regarded as hardware
simulation. Simulation done using Simulink differs from
actual FPGA hardware implementation results since
Simulink works with floating point numbers whereas FPGAs
use fixed point format. However, there is no discrepancy
between Hardware Emulation and hardware implementation
results since System Generator uses the fixed point format.
In the Hardware Co-Simulation mode, the System Generator
generates the HDL library block of the hardware model. A
new Simulink model is then made containing this library
block along with sources and sinks of Simulink. After the
generated bit file is downloaded on to the FPGA, the input
to the device can be given from Simulink and the device
output can be received back in Simulink. This enables
extensive testing as the data from the FPGA can be directly
exported to the MATLAB environment where spectral
analysis, Signal to Quantization Noise Ratio (SQNR)
estimation, etc. can be performed.

4. USING SYSTEM GENERATOR FOR DSP
TEACHING

The 2nd order ΔΣ Modulator (DSM2) of Figure 1 was
implemented on a Digilent Spartan-3E Starter Kit that has
the Xilinx Spartan-3E XC3S500E FPGA device with an on-
board clock of 50 MHz [10]. This board is supported by the
Xilinx System Generator for DSP. The System Generator
model of DSM2 can be seen in Figure 2. The Gateway-In
and Gateway-Out ports interface the Simulink double data
type and the FPGA fixed point environments. Only Xilinx
blockset blocks are used between the Gateway-In and
Gateway-Out ports. The accumulators were implemented by
using a delay element and an AddSub block in the adder
mode. The difference signals were generated by using the
AddSub block in the subtraction mode. The one bit
quantizer was implemented by using a relational operator
with a multiplexer. The System Generator allows for setting
the latency of various blocks and hence delays can be

2766

Figure 2: Xilinx System Generator hardware implementation of the 2nd order ΔΣ modulator (DSM2)

-1000 -500 0 500 1000
0

50

100

150

200

Frequency in KHz

A
m

pl
itu

de

Spectrum at DSM2 Output

Figure 3: DSM2 output signal spectrum at OSR 256

incorporated in feedback loops. It can be seen from Figure 2
that the input signal was given to DSM2 from Simulink. In
this particular case a signal of bandwidth 20 KHz was used
as input and it was composed of five different sinusoidal
components. The output signal of DSM2 was received back
in Simulink. This was made possible due to the Hardware
Co-Simulation mode of operation.

Both the input and output signals were exported to
MATLAB. The spectral plot of the DSM2 output from the
FPGA was taken in MATLAB and this can be seen in Figure
3. It is evident that students can operate a DSP design on
FPGA devices and at the same time they can perform
analysis of data received from the FPGA device in
MATLAB, without going to a lower level of abstraction.

Various experiments can be designed by changing
parameters of the ΔΣ Modulator such as order of the
accumulator, resolution of the quantizer and Oversampling
Ratio (OSR) of the modulator. Students can compare the
performance of various designs by estimating the SQNR,
the dynamic range and by observing the resulting spectral

plots in MATLAB, specifically looking for spectral purity in
the band of interest and noise shaping elsewhere.

The Xilinx System Generator has a short learning curve
and those already familiar with the Simulink environment
can start designing using System Generator with ease.
Laboratory experiments similar to the implementation of
DSM2 can be developed for DSP courses. Adding these labs
to the MATLAB based labs of these courses will have two
main benefits, (i) students will experience working with real
time DSP with hardware in the loop and (ii) students can be
introduced to the FPGA platform which may be new to
them. This may also enable students to find out if they are
interested in the field of hardware design and whether they
should take advanced courses in digital system design.

5. USING SYSTEM GENERATOR FOR DSP

RESEARCH

To demonstrate the validity of this approach in DSP
research, we have designed and implemented a 2nd order
Adaptive ΔΣ Modulator (ADSM2) on a FPGA device in an
earlier work [11]. The implementation was done using the
Xilinx System Generator. This tool reduced our design time
and enabled us to implement different types of ΔΣ
Modulators for comparison with the adaptive version
ADSM2. The System Generator allowed us to work with
different FPGA platforms and eventually we decided in
favor of using the Digilent Spartan-3E Starter Kit. Figure 4
shows the System Generator model of ADSM2 which
consists of a Modulator Stage and an Adaptation Stage.

Adaptation
Stage

Modulator
Stage

x(n)
d(n)

w(n)

f(n)
f(n-1)

y(n)

Figure 4: Xilinx System Generator hardware implementation of the 2nd order Adaptive ΔΣ modulator with one bit quantization (ADSM2)

2767

Figure 5: SQNR analysis of DSM2 and ADSM2 at OSR 512

The Modulator Stage consists of DSM2, already

presented in Section-4 while the Adaptation Stage generates
an adaptive feedback signal that follows the input signal.
The difference of the input signal and the adaptive feedback
signal becomes the input to the modulator stage. Thus, the
modulator stage (DSM2) operates on a difference signal that
is in a reduced range leading to the generation of less
quantization noise in ADSM2 as compared to a standalone
DSM2. This leads to a superior SQNR performance by
ADSM2. Figure 5 compares the SQNR performance of
ADSM2 and DSM2 at an OSR of 512. It clearly
demonstrates that ADSM2 is the better of the two
modulators not only in terms of SQNR performance but also
in terms of dynamic range. The adaptive feedback signal
was generated using the adaptation algorithm presented in
[12]. It can be seen in Figure 4 that the ADSM2 model was
developed entirely of blocks from the Xilinx blockset of the
System Generator tool. The use of Hardware Co-Simulation
mode enabled the input signal to be given from Simulink
and the output of ADSM2 was received back in Simulink.
The SQNR analysis that resulted in Figure 5 was done by
exporting the results to MATLAB and performing
computations there.

Some other design examples about the use of the Xilinx
System Generator tool in DSP research can be found in [13]
and [14]. The former uses this tool in the FPGA
implementation of an unmanned vehicle control system
whereas the later uses it in the FPGA implementation of
parallel 2-D MRI image filtering.

6. CONCLUSION

The use of the Xilinx System Generator tool for DSP
education and research is presented. It is shown that this tool
is ideal for developing FPGA based hardware without the
requirement of learning HDLs and Hardware Design. This
claim was corroborated with the help of some ΔΣ Modulator
based implementations. A simple 2nd order ΔΣ Modulator
was implemented to show how the System Generator can be
used in Signal Processing education while an advanced 2nd
order Adaptive ΔΣ Modulator was developed to demonstrate

its importance in research. The implementation of various
designs was carried out on a Xilinx Spartan-3E FPGA. The
System Generator facilitates extensive testing to take place
due to the Hardware Co-Simulation mode of operation
which allows for input signals to be given from Simulink
and receiving output signals back in Simulink. The use of
the System Generator reduces design time and allows
working with different FPGA platforms. It also enables the
design and quick implementation of various designs that
helps in making useful comparisons.

7. REFERENCES

[1] R. Woods, J. McAllister, G. Lightbody and Y. Li, “FPGA based

Implementation of Signal Processing Systems,” A John Wiley & Sons
Inc, publication, 2008.

[2] Cameron H. G. Wright, Thad B. Welch, Delores M. Etter and
Michael G. Morrow, “A systematic model for teaching DSP,"
Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE
International Conference on, vol.4, no., pp.IV-4140-IV-4143, 13-17
May 2002.

[3] Andres Kwasinski, "In-class demonstrations with a portable
laboratory for teaching DSP to Computer Engineering majors,"
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, vol., no., pp.2896-2899, 22-27 May
2011.

[4] N. Kehtarnavaz and S. Mahotra, "FPGA implementation made easy
for applied digital signal processing courses," Acoustics, Speech and
Signal Processing (ICASSP), 2011 IEEE International Conference
on, vol., no., pp.2892-2895, 22-27 May 2011.

[5] M. Ownby and W.H. Mahmoud, "A design methodology for
implementing DSP with Xilinx® System Generator for Matlab®,"
System Theory, 2003. Proceedings of the 35th Southeastern
Symposium on, vol., no., pp. 404- 408, 16-18 March 2003.

[6] R. Saint-Nom and D. Jacoby, "Sigma-Delta Converters as a SP
Teaching Tool," Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on,
vol.2, no., pp.II, 14-19 May 2006.

[7] G. I. Bourdopoulus, A. Pnevmatikakis, V. Anastassopoulos and T. L.
Deliyannis, “Delta-Sigma Modulators: Modeling, Design and
Applications,” Imperial College Press, 2003.

[8] R. Schreier & G. Temes, “Understanding Delta-Sigma Data
Converters,” A John Wiley & Sons Inc., publication, 2005.

[9] Xilinx System Generator for DSP User Guide, r10.1.1, April 2008.
[10] Digilent Spartan-3E Starter Board with Xilinx XC3S500E FPGA

(http://digilentinc.com/Products/Detail.cfm?NavPath=2,400,792&Pro
d=S3EBOARD)

[11] S. Athar, M.A. Siddiqi and S. Masud, "Design and FPGA
Implementation of a 2nd Order Adaptive Delta Sigma Modulator
with One Bit Quantization," Field Programmable Logic and
Applications (FPL), 2010 International Conference on, vol., no.,
pp.388-393, Aug. 31 2010-Sept. 2 2010

[12] C. M. Zierhofer, “Adaptive sigma-delta modulation with one-bit
quantization,” Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, vol.47, no.5, pp.408-415, 2000.

[13] S.N. Murthy, W. Alvis, R. Shirodkar, K. Valavanis and W. Moreno,
"Methodology for implementation of unmanned vehicle control on
FPGA using system generator," Devices, Circuits and Systems, 2008.
ICCDCS 2008. 7th International Caribbean Conference on, vol.,
no., pp.1-6, 28-30 April 2008

[14] S. Hasan, A. Yakovlev and S. Boussakta, "Performance efficient
FPGA implementation of parallel 2-D MRI image filtering algorithms
using Xilinx system generator," Communication Systems Networks
and Digital Signal Processing (CSNDSP), 2010 7th International
Symposium on, vol., no., pp.765-769, 21-23 July 2010

2768

