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ABSTRACT
The sparse signal recovery in standard compressed sensing

(CS) requires that the sensing matrix is exactly known. The

CS problem subject to perturbation in the sensing matrix is

often encountered in practice and has attracted interest of re-

searches. Unlike existing robust signal recoveries with the re-

covery error growing linearly with the perturbation level, this

paper analyzes the CS problem subject to a structured pertur-

bation to provide conditions for stable signal recovery under

measurement noise. Under mild conditions on the perturbed

sensing matrix, similar to that for the standard CS, it is shown

that a sparse signal can be stably recovered by �1 minimiza-

tion. A remarkable result is that the recovery is exact and

independent of the perturbation if there is no measurement

noise and the signal is sufficiently sparse. In the presence of

noise, largest entries (in magnitude) of a compressible signal

can be stably recovered. The result is demonstrated by a sim-

ulation example.

Index Terms— Compressed sensing, matrix perturba-

tion, stable signal recovery, robust signal recovery

1. INTRODUCTION

Compressed sensing (CS) has been a very active area of in-

formation theory and signal processing since the pioneering

works of Candès et al. [1] and Donoho [2]. In CS, one seeks

to recover a sparse/compressible signal from significantly re-

duced number of (possibly noisy) linear measurements. It

has been shown that, under mild conditions, a sparse signal

can be stably recovered, with the recovery error at most pro-

portional to the measurement noise level, by an �1 minimiza-

tion approach. In addition, the largest entries (in magnitude)

of a compressible signal can be stably recovered. Other ap-

proaches providing similar results are also reported thereafter,

e.g., IHT [3].

Note that the sensing matrix is assumed known a priori in

the standard CS. In practical situations, such as the direction

of arrival (DOA) estimation [4], the sensing matrix is often

subject to perturbation which is not exactly known. There

have been recent and active studies of such situations. Her-

man and Strohmer [5] analyzed the effect of a matrix per-

turbation and showed that the error of signal recovery grows

linearly with the perturbation level and thus is robust to the

perturbation. Similar robust recovery results were also re-

ported in [6, 7]. These results imply that the signal recovery

may suffer from large error under large perturbation. Other

works dealing with sensing matrix perturbations include Zhu

et al. [8] on a sparse total least-squares approach to alleviat-

ing effect of the perturbation and Yang et al. [4] on the frame-

work of DOA estimation and its solution based on a sparse

Bayesian perspective. Overall, all the existing works provide

no guarantees on the signal recovery performance when in-

corporating the perturbation into the recovery algorithm.

This paper is on the CS problem subject to a structured

matrix perturbation. In this paper, the term “stable signal

recovery” means that the recovery error is at most propor-

tional to the measurement noise level, while “robust signal

recovery” means that the error grows at most linearly with

the matrix perturbation level. Different from the robust sig-

nal recovery results [5, 6] that are based on the nominal but

not true sensing matrix, this paper explores the stable recov-

ery of a sparse signal from noisy measurements by incorpo-

rating the perturbation into the recovery algorithm. For this

purpose, a structured matrix perturbation, with each column

vector bounded within a parameterized interval, is considered

in this paper. Its analysis shows that the recovery of a sparse

signal is stable under similar mild conditions as for the stan-

dard CS problem by incorporating the perturbation structure

into the �1 minimization. In the special noise-free case, for

a sufficiently sparse signal, the recovery is exact regardless

of the perturbation. Further, largest entries of a compressible

signal can be stably recovered under the same conditions. A

numerical simulation is carried out to demonstrate our analy-

sis.

Notations used in this paper are as follows. Bold-case let-

ters are reserved for vectors and matrices. Superscripts o and
∗ refer to the original value and an optimal value regarding

to an optimization problem, respectively. xi is the ith entry
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of a vector x. diag (x) is a matrix with its diagonal entries

being entries of a vector x. � is the Hadamard (elementwise)

product.

2. STANDARD CS

A signal is called k-sparse if it has at most k nonzero entries

and is called compressible if it can be well approximated by a

sparse signal. Denote xk the best k-sparse approximation to

a signal xo in the sense∥∥xo − xk
∥∥
2
= min

‖x‖0≤k
‖xo − x‖2 (1)

with ‖x‖0 counting the number of nonzero entries of a vec-

tor x. In the standard CS, a compressible signal xo ∈ R
n is

acquired via a known linear transformation that is usually de-

scribed by a fat matrix Φ ∈ R
m×n with m < n. The acquired

data vector is given as

y = Φxo + e, (2)

where e denotes the vector of measurement noises, y, e ∈
R

m, and ‖e‖2 ≤ ε. Given y, Φ and ε, CS studies conditions

for recovering the signal xo via an efficient approach. This

paper focuses on the �1 norm minimization approach. The

restricted isometry property (RIP) [9] has become a dominant

tool to such analysis, which is defined as follows.

Definition 1 Define the k-restricted isometry constant (RIC)
of a matrix Φ, denoted by δk (Φ), as the smallest number such
that

(1− δk (Φ)) ‖v‖22 ≤ ‖Φv‖22 ≤ (1 + δk (Φ)) ‖v‖22 (3)

holds for all k-sparse vectors v. Φ satisfies the k-RIP if
δk (Φ) < 1.

Based on the RIP, the following theorem holds.

Theorem 1 ( [10]) Assume that δ2k (Φ) <
√
2 − 1 and

‖e‖2 ≤ ε. Then the solution x∗ to the basis pursuit denoising
(BPDN) problem

min
x

‖x‖1 , subject to ‖y −Φx‖2 ≤ ε (4)

satisfies

‖x∗ − xo‖2 ≤ C0k−1/2
∥∥xo − xk

∥∥
1
+ C1ε, (5)

where C0 =
2[1+(

√
2−1)δ2k]

1−(
√
2+1)δ2k

and C1 = 4
√
1+δ2k

1−(
√
2+1)δ2k

.

Theorem 1 tells that a k-sparse signal can be stably recov-

ered provided δ2k (Φ) <
√
2− 1 since xo = xk in such case,

and that the largest k entries of a compressible signal also can

be stably recovered under the same condition. In a special

noise free case, the recovery of a k-sparse signal is exact. It

is also noted that the condition of the RIP has been relaxed in

the literature but it is beyond the scope of this paper.

3. CS SUBJECT TO A STRUCTURED
PERTURBATION

3.1. Problem Formulation

In the standard CS, the sensing matrix is assumed to be ex-

actly known. Such an ideal assumption is not always the

case in practice. Consider that the true sensing matrix is

Φ = A+E ∈ R
m×n, where A is the nominal sensing matrix

and E ∈ R
m×n represents the unknown perturbation. In this

paper we consider a structured perturbation in the form E =
BΔo, where B ∈ R

m×n is known a priori, Δo = diag (βo)
is a bounded uncertain term with βo ∈ [−r, r]

n
and r > 0.

As a result, the observation model in (2) becomes

y = Φxo + e, Φ = A+BΔo (6)

with Δo = diag (βo), βo ∈ [−r, r]
n

and ‖e‖2 ≤ ε. Given y,

A, B, r and ε, the CS task is to recover xo, possibly, as well

as βo.

3.2. Main Results of This Paper

A vector v is called 2k-duplicately (D-) sparse if v =[
vT
1 ,v

T
2

]T
with v1 and v2 being of the same dimension

and share the same support. We introduce the concept of

duplicate (D-) RIP as follows.

Definition 2 Define the 2k-duplicate (D-) RIC of a matrix Φ,
denoted by δ̄2k (Φ), as the smallest number such that(

1− δ̄2k (Φ)
) ‖v‖22 ≤ ‖Φv‖22 ≤ (

1 + δ̄2k (Φ)
) ‖v‖22 (7)

holds for all 2k-D-sparse vectors v. Φ satisfies the 2k-D-RIP
if δ̄2k (Φ) < 1.

With respect to the perturbed observation model in (6), let

Ψ = [A,B]. The main results of this paper can be stated in

the following theorems. Readers are referred to [11] for their

proofs.

Theorem 2 Assume that δ̄4k (Ψ) <
(√

2 (1 + r2) + 1
)−1

,

‖xo‖0 ≤ k and ‖e‖2 ≤ ε. Then the solution (x∗,β∗) to the
perturbed (P-) BPDN problem

min
x∈Rn,β∈[−r,r]n

‖x‖1 , subject to ‖y − (A+BΔ)x‖2 ≤ ε

(8)

with Δ = diag (β) satisfies that

‖x∗ − xo‖2 ≤ Cε, (9)

‖(β∗ − βo)� xo‖2 ≤ Cε, (10)

where

C =
4
√

1 + δ̄4k (Ψ)

1−
(√

2 (1 + r2) + 1
)
δ̄4k (Ψ)

,

C =

[
2 +

√
1 + r2 ‖Ψ‖2 C

]
√
1− δ̄4k (Ψ)

.
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Theorem 3 Assume that δ̄4k (Ψ) <
(√

2 (1 + r2) + 1
)−1

and ‖e‖2 ≤ ε. Then the solution (x∗,β∗) to the P-BPDN
problem in (8) satisfies that

‖x∗ − xo‖2 ≤
(
C0k

−1/2 + C1

)∥∥xo − xk
∥∥
1
+ C2ε, (11)

∥∥(β∗ − βo)� xk
∥∥
2
≤

(
C0k−1/2 + C1

)∥∥xo − xk
∥∥
1
+ C2ε,

(12)

where

C0 = 2
[
1 +

(√
2 (1 + r2)− 1

)
δ̄4k (Ψ)

]
/a,

C1 = 2
√
2rδ̄4k (Ψ) /a,

C0 =
√
1 + r2 ‖Ψ‖2 C0/b,

C1 =
[√

1 + r2C1 + 2r
]
‖Ψ‖2 /b

with a = 1−
(√

2 (1 + r2) + 1
)
δ̄4k (Ψ), b =

√
1− δ̄4k (Ψ)

and C2 = C, C2 = C with C, C as defined in Theorem 2.

3.3. Some Discussions on the Main Results

Theorem 2 states that, in the CS problem subject to the struc-

tured perturbation considered in this paper, the original sparse

signal can be stably recovered via an �1 minimization ap-

proach incorporated with the perturbation structure, provided

that the D-RIP is sufficiently small with respect to the per-

turbation level in terms of r. Meanwhile, the perturbation

parameter βo can be stably recovered on the support of xo.

Note that it is impossible to recover βo out of the support of

xo since it has no contributions to the observation y.

As the D-RIP condition is satisfied in Theorem 2, the

sparse signal recovery error of the perturbed CS is constrained

by the noise level ε, and the influence of the perturbation is

limited to the coefficient before ε. For example, if δ̄4k (Ψ) =
0.2, then ‖x∗ − xo‖2 ≤ 8.48ε, 8.50ε, 11.0ε corresponding to

r = 0.01, 0.1, 1, respectively. It shows that the influence of

the perturbation can be arbitrarily small, even for a large per-

turbation, provided that the noise is sufficiently small. As

a special case, the recovery is exact in the noise free case.

This is in contrast to the robust recovery results [5, 6] where

the recovery error exists once a matrix perturbation appears.

Theorem 3 is a general form of Theorem 2 and it shows that

largest entries of a compressible signal, as well as the per-

turbation parameter βo on the support of xk, can be stably

recovered under the same D-RIP condition.

The result in this paper is parallel to that in the standard

CS. Omitting the difference between δ2k (Φ) and δ̄4k (Ψ), as

the perturbation vanishes or equivalently r → 0, the con-

ditions in Theorems 1 and 3 coincide, as well as the upper

bounds in (5) and (11) on the recovery errors.

Existing works studying the RIP mainly focus on random

matrices. In the standard CS, Φ has the k-RIP with constant

δ with a large probability provided that m ≥ Cδk log (n/k)
and Φ has properly scaled i.i.d. subgaussian distributed en-

tries with constant Cδ depending on δ and the distribution.

The D-RIP can be considered as a model-based RIP intro-

duced in [12]. Suppose that A, B are mutually independent

and both are i.i.d. subgaussian distributed (the true sensing

matrix Φ = A+BΔo is also i.i.d. subgaussian distributed if

βo is independent of A and B). The model-based RIP is de-

termined by the number of subspaces of the structured sparse

signals that are referred to as the D-sparse ones in the present

paper. For Ψ = [A,B], the number of 2k-dimensional sub-

spaces for 2k-D-sparse signals is

(
n
k

)
. Consequently, Ψ has

the 2k-D-RIP with constant δ with a large probability also

provided that m ≥ Cδk log (n/k) by [12, Theorem 1]. So, in

the case of high dimensional system, the D-RIP condition on

Ψ, as r → 0, in Theorem 2 or 3 can be satisfied once the RIP

condition on Φ (after proper scaling of columns) in the stan-

dard CS is met. It means that the structured perturbation in

the perturbed CS gradually strengthens the D-RIP condition

for stable signal recovery but there exists no gap between our

considered perturbed CS and the standard CS in the case of

high dimensional systems.

As mentioned before, the RIP condition for guaranteed

stable recovery in the standard CS has been relaxed. Similar

techniques may be adopted to possibly relax the D-RIP con-

dition in the perturbed CS. While this paper is focused on the

�1 minimization approach, it is also possible to modify other

algorithms in the standard CS, e.g., IHT, and apply them to

the perturbed case to provide similar recovery guarantees.

3.4. Alternating Algorithm for P-BPDN

The P-BPDN problem in (8) is nonconvex and the global min-

imum cannot be easily obtained. A simple method is to solve

a series of BPDN problems with

x(j+1) = argmin
x

‖x‖1 , subject to∥∥∥y −
(
A+BΔ(j)

)
x
∥∥∥
2
≤ ε, (13)

β(j+1) = arg min
β∈[−r,r]n

∥∥∥y − (A+BΔ)x(j+1)
∥∥∥
2

(14)

starting from β(0) = 0, where the superscript (j) indicates

the jth iteration and Δ(j) = diag
(
β(j)

)
. The alternating

algorithm defined by (13) and (14) converges to a stationary

point. It also can be shown that an optimal solution to (8) is

a stationary point of this alternating algorithm. Readers are

referred to [11] for the details.

A numerical result is presented in Fig. 1, where a sparse

signal of length n = 100, composed of k = 5 unit spikes,

is sought to be recovered from m = 30 noisy measurements.

In the simulation, βo is uniformly distributed in [−r, r] with

r = 0.1, A and B are mutually independent and i.i.d. zero
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0

1
CS using the nominal sensing matrix, signal recovery, error =0.35956

0 20 40 60 80 100
−1

0

1
CS using our proposed P−BPDN, signal recovery, error =0.034986

0 20 40 60 80 100
−0.1

0

0.1
CS using our proposed P−BPDN, recovery of βo

Fig. 1. Sparse signal recovery from noisy measurements in

CS subject to structured matrix perturbation. Black circles re-

fer to the original signal and perturbation parameter; red stars

refer to the recoveries. Errors refer to the Euclidean distances

between the recovered signals and the original one.

mean Gaussian distributed. The Euclidean distances from the

recovered signals (red stars) of CS, using the nominal sensing

matrix (corresponding to the robust signal recoveries [5]) and

the P-BPDN approach (the proposed stable signal recovery),

to the original one (black circles) are measured, respectively.

As shown in Fig. 1, a large recovery error exhibits in CS us-

ing the nominal sensing matrix A, while a good recovery of

the original signal, as well as that of the perturbation param-

eter βo on the support of xo, is obtained using our proposed

P-BPDN. Note that βo out of the support of xo cannot be

recovered as illustrated in Subsection 3.3.

4. CONCLUSION

This paper studied the CS problem subject to a structured ma-

trix perturbation and measurement noise. It was shown that,

as in the standard CS, sparse signals can be stably recovered

in the perturbed CS by an �1 minimization approach incor-

porated with the perturbation structure. A general result for

compressible signals was also reported. An alternating algo-

rithm was proposed for the perturbed �1 minimization prob-

lem and a numerical simulation was presented to confirm our

analysis.

In this paper we showed that the RIP condition for guar-

anteed stable recovery can be satisfied for a random pertur-

bation and nominal sensing matrix that are mutually indepen-

dent. One future work is to study practical situations where

the perturbation may depend on the nominal sensing matrix.
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