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ABSTRACT

We develop a greedy pursuit algorithm for solving the distributed

compressed sensing problem in a connected network. This algo-

rithm is based on subspace pursuit and uses the mixed support-set

signal model. Through experimental evaluation, we show that the

distributed algorithm performs significantly better than the stand-

alone (disconnected) solution and close to a centralized (fully con-

nected to a central point) solution.

Index Terms— Distributed compressed sensing, greedy pursuit.

1. INTRODUCTION

Compressed sensing (CS) [1, 2] refers to a class of under-sampling

problems, where the measured data is inherently sparse. In the

general CS problem, we collect few sample points and endeavor

for reconstructing a larger sparse signal. CS has been shown po-

tentially useful in a wide range of applications, for example brain-

scanning [3], spectrum estimation [4] and sensor networks [5].

Currently, three main classes of CS reconstruction algorithms are in

practice: convex relaxation, non-convex and greedy-pursuit.

Convex relaxation algorithms are theoretically elegant and they

provide optimal performance, but at the expense of higher compu-

tational complexity. On the other hand, greedy-pursuit algorithms

have shown to provide good performance at low complexity. Exam-

ples of such algorithms are subspace pursuit (SP) [6] and orthogonal

matching pursuit (OMP) [7]. From a measurement vector, the main

principle of greedy-pursuit algorithms is to estimate the underlying

support-set of a sparse vector followed by evaluating the associated

signal values. The support set is the set of indices corresponding to

the non-zero elements of a sparse vector. To estimate the support set

and the associated signal values, the greedy-pursuit algorithms use

linear algebraic tools, for example the matched filter for detection

and least squares for estimation.

In the literature, CS is presumably considered for a setup where

all the measurements are acquired from a single sensor. While sub-

stantial amounts of work have been put for the single sensor CS prob-

lem, not much efforts have been put for a distributed CS reconstruc-

tion problem. A distributed CS setup uses multiple sensors to collect

the measurements of sparse signals sharing some common informa-

tion, but the sensors are not necessarily centrally connected to a fu-

sion center. There are some results for the distributed CS problem

based on convex relaxation algorithms [4, 8]. To the best of the au-

thors knowledge, there exists no solution for efficiently solving the

distributed CS problem based on greedy-pursuit algorithms.
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We endeavor for constructing a de-centralized, distributed CS

algorithm based on greedy-pursuits. Using the signal model of [9]

and the computationally efficient subspace pursuit (SP) algorithm,

we develop a decentralized algorithm called distributed SP (DiSP).

The signal model of [9] is called the mixed support-set model and

can be used to describe joint sparsity information of several sparse

signals under acquisition at different sensor nodes in a connected

network. In a connected network, the DiSP algorithm first finds an

estimate of the local support-set and exchange this local estimate to

its neighbors over the network. Using the support-set estimates re-

ceived from all the neighbors, the sensor node attempts to find a bet-

ter estimate of the support-set. This iterative strategy of exchanging

support-set estimates continues until convergence is achieved over

the distributed network. By experimental evaluation, we show that

the DiSP provides a substantial increase of reconstruction perfor-

mance (for a moderately connected network), almost as good as a

centralized (fully connected to a central point) solution.

Notations: Let a matrix be denoted as A ∈ R
M×N and a vector

as x ∈ R
N . T is the support-set of x, which is defined in the next

section. AT is the sub-matrix consisting of the columns in A corre-

sponding to the elements in a set T . Similarly xT is a vector formed

by the components of x that are indexed by T . The pseudo inverse

of A is denoted as A† and the matrix transpose as AT .

2. DISTRIBUTED COMPRESSED SENSING

Using a general multiple sensor node system setup [10], we first de-

scribe the distributed CS problem and then the mixed support-set

signal model. The mixed support-set model was introduced in [9]

where it is shown to be a generalization over previous signal models

proposed in [10, 11, 12]. We also mention network topology and

provide some algorithmic notations.

For the l’th sensor, we have the sparse signal xl ∈ R
N which is

observed for the distributed CS problem as

yl = Alxl +wl, ∀l ∈ {1, 2, ..., L}, (1)

where yl ∈ R
M is a measurement vector, Al ∈ R

M×N a measure-

ment matrix, wl ∈ R
M is the measurement error, M < N . Al and

wl are independent across l. The signal vector xl has Kl non-zero

components with indices Tl = {i : xl(i) �= 0}. Tl is referred to as

the support-set of xl with cardinality |Tl| = ‖xl‖0 = Kl.

The distributed CS reconstruction problem endeavors for finding

xl for all l by exploiting some shared structure among the l sensors

defined by the underlying signal model and by exchanging some in-

formation over the given network topology.
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2.1. The Mixed Support-Set Model

Now, we describe the mixed support-set signal model with a shared

structure where the signal vector xl consists of two parts

xl = z
(c)
l + z

(p)
l , ∀l ∈ {1, 2, ..., L}. (2)

In (2) both z
(c)
l and z

(p)
l have independent non-zero components.

There are K
(p)
l non-zero values associated with z

(p)
l . For simplicity

we assume that the non-zero values are located uniformly at random

over the support-set T (p)
l ∈ {1, 2, . . . , N}, and ∀l ∈ {1, 2, . . . , L}.

For z
(c)
l there are similarly K(c) non-zero components with the con-

straint that the associated support-set T (c)
l is shared, as T (c)

l =

T (c), ∀l ∈ {1, 2, . . . , L}. The elements of T (c) are the same (com-

mon) to all signals, but unknown to the re-constructor1. For the l’th

node, this gives a support-set Tl for each xl as

Tl = T
(c) ∪ T (p)

l , ∀l ∈ {1, 2, ..., L}. (3)

We define Kl,max = |T (c)|+ |T (p)
l | = K(c) +K

(p)
l . Note that the

support-sets can intersect, so Kl,max ≥ Kl.

2.2. Network Topology

The DiSP algorithm presented here can work in any network topol-

ogy. Having that said, we can expect that the algorithm will perform

better (faster convergence, better result, etc.) if the network is well

connected. The effects of the network topology on the performance

of DiSP is not considered in this paper. Here, we focus on the devel-

opment of the DiSP algorithm for any given network.

2.3. Algorithmic Notation

For clarity in the algorithmic notation, we define three algorithm

functions as follows

resid(y,B) � y −BB
†
y, for some matrix B, (4)

max indices(x, k) � {the set of indices corresponding to the

k largest amplitude components of x}, (5)

and

add1(s, T ) � {∀j ∈ T , perform sj = sj + 1}, (6)

where s = [s1 s2 . . . sN ] and sj ≥ 0.

We refer to the node executing the algorithm as the present or

current node. The current node can be identified by sub-index l∗.

We also define Ll∗ as the set of neighboring nodes connected to the

current node, including itself.

3. DISTRIBUTED SUBSPACE PURSUIT

To implement the distributed subspace pursuit (DiSP) algorithm, we

first have to modify the standard SP algorithm presented in Algo-

rithm 2. Using the modified SP by calling SP(.), the DiSP algorithm

is carried out at each node, shown in Algorithm 1. The DiSP per-

forms two main tasks: the communication task and the calculation

task. For the communication task, some underlying protocol needs

1For easy practical implementation, we assume that the elements are uni-

formly distributed over T (c) and T
(p)
l

.

to be present that takes care of the transmissions in the network. For

the calculation task, the modified SP and the common support-set es-

timation are the main parts carried out by the algorithm. We briefly

mention the complexity of DiSP in subsection 3.2.

Algorithm 1 : Distributed SP (DiSP)

Executed in the l∗-th node, where Ll∗ is the set of neighboring (Note

that l∗ ∈ Ll∗ )

Input: Al∗ , yl∗ , K
(p)
l∗ , K(c)

Initialization:

1: Kl∗,max = K
(c)
l∗ +K(p)

2: (T̂l∗ , x̂l∗ , nl∗)← SP(Al∗ ,yl∗ , ∅,Kl∗,max)
3: nold

l∗ ← nl∗

4: T̂l ← ∅, ∀ l ∈ Ll∗ \ l
∗ (i.e. except l∗)

Iteration:

1: repeat

2: if nl∗ > nold
l∗ then

3: (T̂l∗ , x̂l∗ , nl∗)← (T̂ old
l∗ , x̂old

l∗ , nold
l∗ )

4: end if

5: (T̂ old
l∗ , x̂old

l∗ , ηold
l∗ )← (T̂l∗ , x̂l∗ , ηl∗)

6: T̂ old
l ← T̂l, ∀ l ∈ Ll∗ \ l

∗

7: { Communication: Send T̂l∗ to all nodes l ∈ Ll∗ }

8: { Communication: Receive T̂l from all nodes l ∈ Ll∗ }
9: sl∗ ← 0N×1

10: for each l ∈ Ll∗ do

11: sl∗ ← add1(sl∗ , T̂l)
12: end for

13: T̂ (c)
l∗ ← max indices(sl∗ ,K

(c))

14: (T̂l∗ , x̂l∗ , nl∗)← SP(Al∗ ,yl∗ , T̂
(c)
l∗ ,Kl∗,max)

15: until (nl∗ ≥ nold
l∗ ) and (T̂l = T̂

old
l ∀ l ∈ Ll∗)

Output: x̂l∗ , T̂l∗

Input to the algorithm is the present node’s sensing matrix Al∗ ,

the size of the private and common support set K
(p)
l∗ and K(c), and

the present node’s measurement vector yl∗ . For the initialization

phase of the algorithm, before any communication has taken place,

a standard SP is run to achieve a first estimate of the current node’s

support-set and the signal. We also store the residual norm as n, to

use as performance measure and set some initial parameter values

for the algorithm to start properly.

For the iteration phase, there are four main functionalities being

processed. (i) Step 2 to 4 makes sure that the result do not deviate

away from the best solution, which could happen if the estimated

support set in step 14 is bad. (ii) In step 7 to 8 we have the com-

munication phase, where the support-set data are exchanged among

the nodes. Assuming the measurement-matrices Al are known, the

only exchanged information is the current estimates of the support-

sets T̂l. (iii) In step 9 to 13, an estimate of the common support-set is

achieved. We mention that if the current node has no neighbors, T̂ (c)
l∗

will be chosen as the first K(c) components of T̂l∗ . (iv) In step 15,

the convergence criterion is chosen. We propose to stop when the

residual norm is no longer decreasing and no new data is coming

in. The first, residual norm, criterion comes naturally from the SP

algorithm, but as long as new support-set data is coming in, we may

improve the result in a later iteration. Thus, the second criterion is

added to make sure the algorithm does not stop until the node expe-

rience a stable situation, with no additional support-set information

received.
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3.1. Modified Subspace Pursuit

As mentioned in the description of DiSP, we here describe the mod-

ified SP in Algorithm 2. The initialization phase has, compared to

the standard SP, been modified so that it can use an initial support-

set. The modified SP reduces to the standard SP as defined by Dai and

Milenkovic [6] when Tini = ∅. The sub-index l which describes what

node a particular variable belongs to is not present in this algorithm

because the modified SP has no knowledge about any networks. All

variables belong to the current node.

Algorithm 2 : modified SP

Input: A, y, Tini, Kmax

Initialization:

1: T ′ ← max indices
(
ATy,Kmax

)
∪ Tini

2: x̂ such that x̂T ′ = A
†
T ′y and x̂T̄ ′ = 0

3: T0 ← max indices(x̂,Kmax)
4: r0 ← resid(y,AT0

)
5: k ← 0

Iteration:

1: repeat

2: k ← k + 1
3: T ′ ← Tk−1 ∪ max indices

(
AT rk−1,Kmax

)

4: x̂ such that x̂T ′ = A
†
T ′y and x̂T̄ ′ = 0

5: Tk ← max indices(x̂,Kmax)
6: rk ← resid(y,ATk

)
7: until (‖rk‖2 ≥ ‖rk−1‖2)
8: k ← k − 1 (‘Previous iteration count’)

Output:

1: T̂ ← Tk
2: x̂ such that x̂Tk

= A
†
Tk

y and x̂T̄k
= 0

3: n← ‖rk‖2

At k’th iteration stage, the modified SP algorithm forms the

matched filter AT rk−1, identifies the indices corresponding to the

Kmax largest amplitudes followed by joining with the old support-

set (step 3). This support-set T ′ is likely to be bigger than Kmax.

The algorithm solves a least squares problem with the selected

indices of T ′ and identifies the new indices corresponding to the

Kmax largest amplitudes (step 4 and 5) followed by finding the

residual (step 6). This process is repeated until the residual norm is

non-decreasing. In addition with the sparse signal estimate x̂, we

also output the estimated support-set T̂ and the final residual norm.

3.2. Complexity of DiSP

The modified SP requires one matched filter and two orthogonal pro-

jections in each iteration. Therefore its complexity is approximately

O(KMN) [13]. For the DiSP, the modified SP is called once for ev-

ery iteration which continues to iterate until convergence is achieved.

We will refer to this convergence by the parameter γ which depends

on the network topology, noise level, total number of nodes and size

of the common support-set. Thus the convergence for DiSP is ap-

proximately O(γKMN). For the system setup in the simulation

results of section 4, the number of iterations turned out to be less

than ten (γ < 10).

4. SIMULATIONS AND RESULTS

In the simulations we are interested in how close DiSP comes to the

centralized solution, referred to as joint SP (JSP) developed in [9],

and how the DiSP compares to the standard SP (with no network).

We report the results for clean and noisy measurement cases.

In the noisy case we have chosen signal-to-measurement-noise-ratio

(SMNR) 20 dB, (i.e., 10 log10
E{‖x‖2

2
}

E{‖w‖2
2
}

= 20). Note that we drop

the subscript l because we are averaging over all nodes l. To com-

pare the algorithms, the performance measure chosen is the signal-

to-reconstruction-error-ratio (SRER) which is defined as

SRER = 10 log10
E
{
‖x‖22

}

E {‖x− x̂‖22}
. (7)

Next we describe the simulation setup. We emulate a connected

network with a binary connection matrix C, where a “1” in cij cor-

responds to a connection from node i to node j. In any CS setup, all

sparse signals are expected to be exactly reconstructed if the number

of measurements are more than a certain threshold value. The com-

putational complexity to test this uniform reconstruction ability is

exponentially high. Instead, we can rely on empirical testing, where

SRER is computed for random measurement matrix ensemble. We

define the fraction of measurements as

α =
M

N
. (8)

Using α, the steps of testing strategy is as follows:

1. Given the signal parameter N and connection matrix C, choose

an α (such that M is an integer).

2. Randomly generate:

• A set of M×N sensing matrices {Al}
L

l=1 where the compo-

nents are drawn from an i.i.d. Gaussian source (i.e. am,n ∼
N

(
0, 1

M

)
) and scale the columns of Al to unit-norm.

• Support-sets T (c) and {T (p)
l }Ll=1 of cardinality K(c) and

{K(p)
l }

L
l=1, respectively. The support-sets are uniformly

chosen from {1, 2, ..., N}.

• A set of signal vectors {xl}
L
l=1 following (2), where {z(c)l }

L
l=1

and {z(p)l }
L
l=1 corresponding to the non-zero components

(support-sets determined in step 2). The non-zero compo-

nents in the vectors are chosen i.i.d from a Gaussian source.

3. Compute the measurements yl = Alxl+wl, ∀l ∈ {1, 2, ..., L}.
Here wl ∼ N (0, σ2

l IM ).

4. Apply the CS algorithms on the data {yl}
L
l=1. The connection

matrix C is used to determine how to distribute the data in the

network.

5. We let the distributed CS algorithm run until no node in the

network improve any more.

In the simulation procedure above, for each node l ∈ {1, 2, . . . , L},
Q sets of sensing and connection matrices are created. For each node

and each sensing matrix, P sets of data vectors are created. In total,

we will average over L ·Q · P data to evaluate the performance.

4.1. Simulation Results

For the plots presented in this paper, we have chosen: one fixed

connection-matrix C such that each node is connected to exactly

two other nodes (i.e., ci,i = ci,i+1 = 1 and cL,1 = 1); N = 500;

K(c) = 10; and ∀l,K(p)
l = K(p) = 10. We have chosen nodes
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(a) Clean measurements
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(b) Noisy measurements, where SMNR = 20 dB

Fig. 1: SRER versus fraction of measurements for clean and noisy (SMNR = 20 dB) measurements.

L = 10 for which we have chosen number of Al’s to 100 (i.e.

Q = 100) and the number of data-sets x to 100 (i.e. P = 100),

giving a total number of L ·Q · P = 100000 data for statistics.

In the figures there are three algorithms compared, DiSP, JSP

and SP. SP is the standard subspace pursuit and JSP is a centralized

version of the decentralized DiSP algorithm. For the SRER of a clean

signal in Fig. 1a, we notice that DiSP performs significantly better

than SP. At α = 0.16 the gain is about 12 dB. For the SRER of

noisy measurements (20 dB noise) in Fig. 1b, the improvement of

performance is almost 6 dB at α = 0.16. We also notice that DiSP

provides close performance to the JSP.

In the simulation results shown here, the experiments were con-

ducted using one distributed network topology C of limited connec-

tivity as mentioned in the testing strategy. We have also results for

various other network topologies and have achieved encouraging re-

sults, but do not show those results here because of space limitations.

5. CONCLUSION

In this paper, a distributed greedy pursuit algorithm called DiSP (dis-

tributed subspace pursuit) is developed. Using the mixed support-

set model, it is shown how this algorithm can be developed based

on the underlying standard subspace pursuit algorithm. By experi-

mental evaluation in a well connected network, we conclude that the

DiSP significantly improves the performance compared to the stan-

dard SP and comes close to the performance of a centralized (fully

connected) solution.
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