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ABSTRACT
Recently, a new class of algorithms has been developed
which iteratively build a sparse solution to an underde-
termined linear system of equations. These algorithms are
known in the literature as Iterative Shrinkage Algorithms
(ISA). ISA algorithms depend on a thresholding parameter,
which is usually provided by the user. In this paper we
develop a new approach for automatically estimating this
thresholding parameter. The proposed approach is general
in a sense that it does not assume any distribution on
the entries of the dictionary matrix, nor on the nonzero
coefficients of the solution vector. In addition, the proposed
approach is simple and can be adapted for use with
newly evolving ISA algorithms. Moreover, the simulation
results show that these proposed algorithms outperform
their previous counterparts.
Indexing Terms: Compressed Sensing, Hard Thresholding,
Iterative Shrinkage algorithms. .

I. INTRODUCTION
The determination of a sparse solution to an underde-

termined linear system of equations has gained tremen-
dous interest in recent years. Many algorithms have been
developed in the literature for solving the aforementioned
problem, and such algorithms have a wide range of applica-
tions such as source coding, denoising, source separation,
and medical imaging [1]. Mathematically speaking, we are
given b = Ax, where both b ∈ Rn and A ∈ Rn×N are
known, while x ∈ RN is an s-sparse coefficient vector to
be determined. Here n < N and s-sparse means that at
most s ≤ n entries of the solution vector x are nonzeros.

An s-sparse solution vector can be determined by solv-
ing one of the following optimization problems [2]

x = arg min
z

||b − Az||2
�2

s.t ||z||�0 ≤ s (1)

x = arg min
z

||b − Az||2�2 + λ||z||�0 (2)

where λ is a regularization parameter, and ||z||�0 is the
�0-norm, which counts the number of nonzero entries in
z. Mathematically speaking, ||z||�0 = |I1(z)| is defined
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as the cardinality of the set I1(z), where I1(z) := {zi :
zi �= 0} is the set of nonzero coefficients. Unfortunately,
solving (1) or (2) is known to be NP hard and requires a
combinatorial search. Many algorithms have been proposed
in the literature for relaxing these two problems by propos-
ing approximate solutions to them [3], [4], [5]. However,
these methods are often found to be inefficient[1]. This is
especially the case for high-dimensional problems, as often
encountered in image processing.

Recently, a new iterative class of algorithms referred to
as Iterative Shrinkage algorithms (ISA) [2], [6], [7], [8],
[9] have been proposed. Despite their simple structure, ISA
algorithms are shown to be very effective in solving (1) and
(2). In Section II we summarize some of the well known
ISA algorithms.

As shown in Section II, ISA algorithms depend on a
user-defined parameter that must be set manually. This
parameter is either the sparsity level s or a thresholding
level θ, which depends on the regularization parameter λ.
Unfortunately, the performance of the ISA algorithms is
greatly affected by the values of these two parameters [10].
In Section III-A we summarize previous approaches pro-
posed in the literature for estimating these two parameters.

In this paper we propose a simple yet efficient technique
for automatically and adaptively determining the threshold-
ing parameter θ. The proposed approach is general in the
sense that it does not assume any distribution on the entries
of the dictionary matrix nor on the nonzero coefficients of
the solution vector. The aim of the proposed technique is
to automate ISA algorithms.

II. ITERATIVE SHRINKAGE ALGORITHMS
In this section we provide a summary of some ISA

algorithms that use different thresholding strategies.

II-A. Iterative Hard Thresholding (IHT) algorithm
The Iterative Hard Thresholding (IHT) algorithm was

first introduced in [2]. This algorithm solves the s–sparse
problem (1) and the �0–regularized optimization problem
(2), respectively as follows:

(IHT1) xi+1 = Hs

(
xi + μiAT

(
b − Axi

))

(IHT2) xi+1 = Hθ

(
xi + μiAT

(
b − Axi

))
,
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where xi is the solution vector at the ith iteration, θ =√
λ, Hs(·) is a non-linear operator that only retains the

s coefficients with the largest magnitude, and Hθ is the
element wise hard thresholding operator

Hθ(x[k]) =

{
x[k] |x[k]| > θ
0 |x[k]| ≤ θ . (3)

In the basic IHT algorithm derived in [2], the parameter
μ is set to unity, while in [11], the authors suggest allowing
its value to depend on the iteration index, to improve the
stability of the algorithm.
II-B. Stagewise OMP (StOMP) algorithm

The StOMP algorithm [6] starts with initial solution
x0 = 0 with the associated initial support I0 = φ and
initial residual r0 = b−Ax0 = b. The algorithm executes
the following steps, for i = 1, 2, . . .

1) Calculate the residual correlation ci = AT ri−1

2) Find the support Ji = {j : |ci(j)| > θ}
3) Update the support Ii = Ii−1 ∪ Ji

4) Set xi = 0 and update (xi)Ii
=(

AT

Ii
AIi

)−1

AT

Ii
b, where AIi

denote the n × |Ii|
matrix with columns chosen using index set Ii, and
(xi)Ii

represent xi supported in Ii.
5) Update the residual ri = b−Axi and go to Step 1.
The thresholding parameter θ used in the second step is

estimated using the procedure described in the next section.
II-C. Hard Thresholding Pursuit (HTP)

The HTP algorithm [9] starts with initial guess of x = 0

and iterates in the following steps:
1) Calculate yi = xi + μiAT

(
b − Axi

)
2) Find the support Ii which contains the indices of the

s largest magnitudes of yi

3) Set xi+1 = 0 and update (xi+1)Ii
=(

AT

Ii
AIi

)−1

AT

Ii
b

II-D. Two Stage Thresholding (TST) algorithms
The last of the ISA algorithms that we consider are

the Subspace Pursuit (SP) algorithm [7] and the Compres-
sive Sampling Matching Pursuit (CoSaMP) algorithm [8].
These two algorithms apply thresholding at two different
stages in each iteration. We therefore refer to them as Two
Stage Thresholding (TST) algorithms. The TST algorithms
are described in the following way. For the SP algorithm,
the value t below is set to s, whereas for CoSaMP, t = 2s.

Start with an s-sparse x0 ∈ RN , typically x0 = 0, and
iterate in the following steps:

1) Calculate the residual correlation ci = AT ri−1

2) Find the support Ii which contains the indices of the
s largest entries of xi

3) Find the support Ji which contains the indices of
the t largest entries of ci

4) Merge the two supports Ti = Ii ∪ Ji

5) Calculate the vector yi =
(
AT

Ti
ATi

)−1

AT

Ti
b

6) Calculate xi+1 = Hs(yi)
It was shown in [12] that by varying the value of t

between s and 2s, the best performance was obtained for
the case t = s, which corresponds to the SP algorithm.
Therefore, in this paper we will use the acronym TST to
refer to the SP algorithm.

III. PROPOSED THRESHOLDING TECHNIQUE
As shown in Section II, all the algorithms except StOMP

require a threshold parameter (s or θ) to be provided by
the user. Selecting a threshold θ is equivalent to selecting
a sparsity level s which equals the number of entries in the
vector (xi + μAT ri) that have magnitude values greater
than θ. Therefore we focus in this section on methods for
estimating θ.

III-A. Previous Approaches for Selecting θ

The simplest approach is to use a fixed value for θ [2],
[10]. However, as demonstrated in [10], the performance
of the IHT algorithm, and hence other IST algorithms, de-
pends greatly on which value is selected. To overcome this
difficulty, researchers suggest varying θ in each iteration
[13], [6]. The approach suggested in [13] is to start with
a large initial threshold θ0 and then decreasing its value
linearly according to the relation θi = θ0(1 − i/Litr),
where i is the iteration number, and Litr is the total
number of iterations. The motivation behind this approach
is to enforce the sparsity of the solution vector at the
first steps by selecting large value for θ, then as the
threshold becomes smaller, the error ||b−Axi||�2 vanishes.
Unfortunately, it was shown in [13] that the performance
of this procedure depends greatly on the initial threshold
θ0 and the number of iterations Litr.

Another approach for selecting the value of θ was
suggested in [6]. This approach assumes that the entries of
the dictionary matrix A are random, and hence, according
to the central limit theorem, the marginal distribution of the
entries of AT ri at the coordinates of I0 is Gaussian, where
I0 refers to the indices of the zero entries of the solution
vector xi−1 at iteration (i−1). The Gaussianity of AT ri is
then utilized for selecting the value of θ. See [6] for more
details about this approach. Therefore, this method is not
suitable for estimating θ from (xi + μiAT (b − Axi)), as
in IHT and HTP, or when A is not an explicit matrix but
instead a linear operator (e.g. partial Fourier and Hadamard
transforms) for which Ax and AT r can be computed
without storing A.

Recently, an extensive computational experiment was
conducted in [12] for selecting the optimum thresholding
values for the IHT and the TST algorithms. However, there
is no direct approach to predict optimum threshold values
for newly evolving ISA algorithms from the suggested
thresholds.

In the next subsection we propose a simple and general
technique for iteratively estimating the threshold parameter
θ. The proposed technique can be used with all the
algorithms described in Section II, and it can be easily
adapted to be used with any new ISA algorithm.
III-B. Proposed Thresholding Technique

The proposed approach relies on the same motivation
as that used in [13]. That is, we first select a large
threshold value to enforce the sparsity of the solution
vector, that is gradually decreased to reduce the approx-
imation error. However, instead of blindly decreasing the
threshold, we suggest a data-driven strategy. To explain
this point, assume that the solution vector produced by
an ISA algorithm at the ith iteration has the structure
xi = [x1 xi

0], where x1 ∈ Rs contains the nonzero
coefficients of the true solution vector x, and xi

0 ∈ RN−s
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Fig. 1. Demonstration of the proposed approach for estimating
the threshold parameter θi.

is a vector with small entries that correspond to the residual
coefficients at the ith iteration. The indices of xi

0 are
the indices of the zero entries of x. Here we do not
assume any distribution model for the entries of x1 or
xi

0. Rather, we assume that both have zero mean and their
respective standard deviations satisfy the relation σ1 > σi

0.
Moreover, if the underlying ISA algorithm is converging,
the standard deviation of the residual will satisfy the
relation σi

0 ≤ σi−1

0 . A demonstrating example is presented
in Fig. 1.

In Fig. 1 the entries of x1 ∈ R200 and xi
0 ∈ R800

are sampled from zero mean Gaussian distributions with
standard deviations σ1 = 1 and σ0 = 0.2, respectively.
The red curve in Fig. 1 represents xi = [x1 xi

0] with
its entries sorted in decreasing magnitude, while the black
curve represents the true solution vector, which correspond
to the case σ0 = 0. This curve will be used as a reference
for estimating the threshold. The two curves overlap for all
amplitude values greater than the red star shown in Fig. 1.

A reasonable choice of the value of θi is therefore the
point at which the two curves coincide, i.e., at the height
of the red star in Fig. 1. By selecting this threshold, all
samples of xi with magnitude values greater than θi most
probably belong to x1, and therefore should be retained,
while the other samples with magnitude values less than
θi most probably belong to xi

0, and hence should be set to
zero. Following this strategy, we can optimally select the
threshold value at each iteration. Unfortunately, this proce-
dure can not be followed in practice because the reference
(black) curve is, of course, not available. To overcome this
difficulty, we suggest estimating a suboptimal thresholding
parameter θ

′

i
, and then applying a correcting parameter ci

to get θ̂i = ciθ
′

i
.

Estimating θ
′

i
: Referring to Fig. 1, we observe a “corner

point”, which we indicate by the solid blue circle. Later, we
relate this point to the coincidence point of the two curves.
We suggest estimating a suboptimal threshold parameter
θ
′

i
as the height of this corner point. Since in practice we

have s < n, we can estimate this corner point from the
largest N1 points in xi, where N1 ≤ n is a parameter to
be determined. Let wi ∈ RN1 be the set of N1 points of
xi that have largest magnitude, sorted in descending order.
We then identify the corner point as the farthest point from
the virtual line connecting the two extreme points of wi,
depicted as the dashed line in Fig. 1.

Let the virtual line be represented by the equation y =
mx + h, where the slope m = (wi[N1]−wi[1])/(N1 − 1)

and the intercept h = wi[1] − m. Then it is not difficult
to show that the shortest (normal) distance from the point
wi[k] (the kth entry in wi) to this virtual line is given by

d[k] =

∣∣wi[k] − mk − h
∣∣

√
m2 + 1

, k = 1, . . . , N1 (4)

After calculating the vector of distances d, we calculate θ
′

i

as the value of wi[k] at which d[k] is maximum.
Selecting the correcting parameter ci: Since xi =

[x1 xi
0] with σ1 > σi

0, the probability that the height θ
′

i
of

the corner point of xi (marked by the solid blue circle in
Fig.1) is less than or equal the height θi of the coincidence
point, (marked by the red star) is relatively high. Therefore,
θ
′

i
< θi most of the time, so we assume ci ≥ 1.

Moreover, due to our previous assumption σi
0 ≤ σi−1

0 , the
difference between θi and θ

′

i
decreases as the algorithm

converges to the correct solution vector, at which the
difference vanishes. Therefore, we suggest starting with
a large correcting parameter c1 > 1, and then linearly
decreasing it to the value of one in Nc iterations. Then
we fix ci = 1, ∀i > Nc. The value of c1 must be selected
such that c1θ

′

1 < w[1] to retain at least one sample point
after the first thresholding operation. In the simulations
we used c1 = 2 and Nc = 5. Increasing the value of Nc

improves the convergence of the ISA algorithms, at the
cost of slower execution.

Selecting the value of N1: Since the length N of the
solution vector is usually much greater than the number
of nonzero entries s, which in turn is less than the length
n of the observed signal, we suggest selecting N1 ≤ n.
Including the remaining (N − N1) points in the compu-
tation of the corner point does not degrade performance,
but increases the overall computation cost of the algorithm
unnecessarily. Moreover, the value of N1 could be fixed
or variable, depending on the ISA algorithm. For instance
the IHT, HTP, and TST algorithms estimate the overall
support of the solution vector in each iteration. Since the
size s of this support is unknown, but satisfies s < n, it
is recommended to set N1 = n with these algorithms. We
followed this strategy in the simulations. On the other hand,
the support of the solution vector estimated by the StOMP
algorithm is accumulated from the indices of the largest
entries in the residual correlation vector ci = AT ri−1. See
Step (3) in Section II-B. Since the number of the largest
entries of ci decreases as the StOMP algorithm converges,
it is reasonable to decrease the value of N1 in turn to
decrease the possibility of picking a false corner point.
In the simulations we selected the value of N1 used with
StOMP as follows. First we selected an initial value of
N1 = 25 then we decreased this value by one in each
iteration until N1 = 10. This value is then kept constant
to the end of the algorithm.

IV. SIMULATION RESULTS
In this section we investigate the impact of the pro-

posed approach on the performance of the four algorithms
(IHT, StOMP, HTP, and TST) described in Section II. In
the implementation of IHT, HTP, and TST we use the
exact sparsity level s, while the thresholding parameter
used with StOMP is estimated using the approach pro-
posed in [6]. For running the StOMP algorithm we used

2723



0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nonzero entries (s)

Pr
ob

ab
ilit

y 
of

 e
xa

ct
 re

co
ns

tru
ct

io
n

HTP
HTP(mod)
StOMP
StOMP(mod)
TST
TST(mod)
IHT
IHT(mod)
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the function “SolveStOMP.m” incorporated in sparselab1.
When the proposed approach is used for estimating the
thresholding parameter, we refer to the resulting algorithms
as IHT(mod), StOMP(mod), HTP(mod), and TST(mod),
respectively.

In this example we compare the performance of the
original algorithms with their modified versions. As a
measure of performance we calculate the probability of
exact reconstruction (PER) of the solution vector x as a
function of the number of the nonzero entries s. The PER
is defined as the ratio between the number of runs at which
the algorithm successfully estimates the sparse solution
vector, to the total number of runs, which equals 100 in
this example. The solution vector is considered estimated
correctly if

∣∣∣
∣∣∣ x̂
||x̂||

− x
||x||

∣∣∣
∣∣∣
�2

≤ 0.01, where x is the exact

solution vector and x̂ is its estimate.
In this example we fix n = 200 and N = 1000, while

s takes the values s = 5, 10, . . . , 90. For each value of
s, a new random dictionary matrix A ∈ Rn×N and a
new s–sparse vector x ∈ RN are randomly generated, and
the measured vector is constructed as b = Ax. Different
distributions for the entries of A and the nonzero entries
of x have been evaluated; however, since the results are
similar for different distributions, we consider only the case
where the entries of A and the nonzero entries of x are
sampled from a zero mean Gaussian distribution with unit
variance. The results are shown in Fig. 2.

In Fig. 2, the curves representing the original algo-
rithms are marked by circles, while those representing
the modified algorithms are marked by squares. Moreover,
each algorithm and its modified version are represented
by the same color. For the original algorithms we find
that IHT has the worst performance while StOMP has the
best performance. The performances of HTP and TST are
almost identical. However, by incorporating the proposed
technique with these algorithms we find that the modified
versions outperform their counterpart original ones. For in-
stance, IHT(mod) outperforms all the original algorithms,
while TST(mod) has the best performance among all
algorithms. The HTP(mod) and StOMP(mod) algorithms
outperform their counterpart original algorithms. It is worth
mentioning that the proposed approach slightly increases
the running time of the modified ISA algorithms due to the
computation of the vector of distances d in each iteration.
For instance, the average conversion times of IHT, HTP,

1This is a free software available at http://sparselab.stanford.edu/

StOMP, and TST for the case s = 40 are 0.68, 0.14, 0.14,
and 0.034 sec., respectively, while the computation time of
their counterpart modified algorithms are 0.75, 0.21, 0.094,
and 0.07 sec, respectively.

V. CONCLUSION
In this paper we have proposed a new approach for

estimating a thresholding parameter for use with different
ISA algorithms. The proposed approach is general in a
sense that it does not assume any distribution on the entries
of the dictionary matrix or on the nonzero coefficients of
the solution vector. Moreover, the proposed approach is
simple and can be adapted to be used with newly evolving
ISA algorithms. Incorporating the proposed approach with
some well known ISA algorithms has resulted in consid-
erable performance improvement.
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