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ABSTRACT

Dynamic tracking of sparse targets has been one of the impor-

tant topics in array signal processing. Recently, compressed

sensing (CS) approaches have been extensively investigated

as a new tool for this problem using partial support informa-

tion obtained by exploiting temporal redundancy. However,

most of these approaches are formulated under single mea-

surement vector compressed sensing (SMV-CS) framework,

where the performance guarantees are only in a probabilis-

tic manner. The main contribution of this paper is to allow

deterministic tracking of time varying supports with multi-

ple measurement vectors (MMV) by exploiting multi-sensor

diversity. In particular, we show that a novel compressive

MUSIC (CS-MUSIC) algorithm with optimized partial sup-

port selection not only allows removal of inaccurate portion

of previous support estimation but also enables addition of

newly emerged part of unknown support. Numerical results

confirm the theory.

Index Terms— Compressed sensing, joint sparsity, time

varying signal, compressive MUSIC

1. INTRODUCTION

Dynamic target tracking has been one of the important classi-

cal topics in array signal processing with many applications.

Recently, there exist renewed interests for this problem with

the help of a modern mathematical tool called compressed

sensing (CS) [1]. Consider the following time varying sup-

port estimation problem:

min
x(t)

‖x(t)‖0, subject to b(t) = Ax(t), t = 0, 1, · · · , (1)

where b(t) ∈ R
m, and x(t) ∈ R

n are noiseless measurement

vector, and sparse signal at time t. Assuming that the sup-

port changes slowly, theoretical results [2] indicates that we

can reduce the required number of samples if we have par-

tially known support estimated from the previous time. More

specifically, let k = |suppx(t)|, u = |I(t) \ I(t − 1)|, and
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e = |I(t−1)\I(t)|, where I(t−1) and I(t)) denotes the pre-

viously estimated support and current one, respectly. Then, if

the restricted isometry constant (RIP) for the sensing matrix

A satisfies δk+e+u < 1, then the solution x(t) of Eq. (1) is

unique [2]. This is much weaker than δ2k < 1 for the original

SMV-CS problem [1], in case of u � k and e � k. They

further showed an l1 convex relaxation of Eq. (1) can provide

the same l0 solution of Eq. (1), if the following RIP condition

is satisfied: 2δ2u + δ3u + δk+e−u + δ2k+e + 2δ2k+e+u < 1,
which is also less stringent than that of original CS prob-

lem, δ2k <
√
2 − 1 [1]. However, single measurement vec-

tor compressed sensing (SMV-CS) guarantees the support re-

covery only in a probabilistic sense [1]. In practise, there

are many situations where we can obtain multiple measure-

ment information for time varying objects. For example, in

single-input multiple-output (SIMO) multiple access chan-

nel (MAC), multiple antenna can observe linear combination

of individual codewords multiplied by the unknown channel

gain from the individual user [3].

One of the main contributions of this paper is to show that

a multiple measurement vector (MMV) framework provides a

unique advantage of “deterministic” support tracking for slow

varying support estimation. The breakthrough is based on

our novel compressive MUSIC (CS-MUSIC) in MMV com-

pressed sensing problem [4], in which part of supports are

found probabilistically using CS, after which the remaining

supports are determined deterministically using the general-

ized MUSIC criterion. In addition, CS-MUSIC allows us to

find all k support as long as at least k − r + 1 support out

of any k-support estimate are correct [5], where r denote the

rank of the measurement matrix. This result can provide an

important clue for deterministic and exact dynamic support

tracking under MMV setup, in which the probabilistic CS

support estimation step is replaced by the previous support es-

timation, after which the CS-MUSIC algorithm eliminates the

incorrect portion of support and then add newly updated sup-

port deterministically. Other contributions of our determinis-

tic support tracking algorithm include the support estimation

error does not propagate along time due to the self-correction

step and time varying sparsity level can be estimated. Fur-

thermore, using large system model, we demonstrate that the

algorithm can correctly track the time varying support even in

noisy measurement cases.
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2. MMV-CS USING CS-MUSIC: A REVIEW

Let m, n and r be a positive integers (m < n) that represents

the number of sensor elements, the ambient space dimension,

and the number of snapshots, respectively. Suppose that we

are given a multiple-measurement vector B ∈ R
m×r, X =

[x1, · · · ,xr] ∈ R
n×r, and a sensing matrix A ∈ R

m×n. A

canonical form MMV problem [4] is given by the following

optimization problem:

minimize ‖X‖0, subject to B = AX, (2)

where ‖X‖0 = |suppX| = k, suppX = {1 ≤ i ≤ n :
xi �= 0}, and the measurement matrix B is full rank, i.e.

rank(B) = r ≤ ‖X‖0.

We can easily expect that the diversity due to the joint

sparsity can improve the recovery performance over SMV

compressed sensing. Indeed, Chen and Huo [6], and Feng

and Bresler [7] showed that we can expect rank(B)/2 gains

over SMV thanks to the MMV diversity. Furthermore, the

noiseless l0 bound is achievable using MUSIC [8] algorithm

if rank(B) = k [7]. However, for any r < k, the MUSIC

condition does not hold. On the other hand, the conventional

MMV-CS methods has a good recovery performance even if

r < k, but becomes worse than MUSIC as r → k. Recently,

we show that this drawback of the conventional MUSIC and

MMV-CS can be overcome by the following generalized MU-

SIC criterion [4].

Theorem 1. [4] Assume that A ∈ R
m×n, X ∈ R

n×r, and
B ∈ R

m×r satisfy AX = B. Furthermore, we assume that
‖X‖0 = k and A satisfies the RIP condition with the left
RIP constant 0 ≤ δL2k−r+1 < 1. If we are given Ik−r ⊂
suppX with |Ik−r| = k − r and AIk−r

∈ R
m×(k−r), which

consists of columns whose indices are in Ik−r, then for any
j ∈ {1, · · · , n} \ Ik−r, a∗j

[
PR(Q) − PR(PR(Q)AIk−r

)

]
aj =

a∗jP
⊥
R([AIk−r

B])aj = 0 if and only if j ∈ suppX .

In [4], we showed that the condition 0 ≤ δL2k−r+1(A) < 1
for generalized MUSIC is equivalent to l0 bound of MMV

problem, which implies that a computational expensive com-

binatorial optimization problem is now reduced to |Ik−r|
support estimation from the original |Ik| support estimation.

Furthermore, by Theorem 1, we can develop a computa-

tionally tractable relaxation algorithm called Compressive

MUSIC (CS-MUSIC), which relaxed the combinatorial opti-

mization step of findng Ik−r support using the conventional

compressed sensing approaches [4]. More specifically, in

compressive MUSIC, we determine k − r indices of suppX
with CS-based algorithms such as 2-thresholding or S-OMP

rather than l0 optimization, where the exact identification of

k − r indices is a probabilistic matter. After that process,

we recover remaining r indices of suppX with a general-

ized MUSIC criterion, which is given in Theorem 1, and this

reconstruction process is deterministic. This hybridization

makes the compressive MUSIC applicable for all ranges of r,

outperforming all the existing methods.

In the original form of the compressive MUSIC algorithm,

the performance of the compressive MUSIC is very depen-

dent on the selection of k− r correct indices of the support of

X . Even with significant improvement of CS-MUSIC, this is

a very stringent condition. Hence, if we have a mean to iden-

tify k − r correct support in any order out of any k-sparse,

then we can expect that the performance of the compressive

MUSIC will be improved. Indeed, the following support se-

lection criterion can address the problem [5].

Theorem 2. [5] Assume that we have a canonical MMV
model AX = B where A ∈ R

m×n, X ∈ R
n×r, ‖X‖0 = k

and r < k < m < n. If there is an index set Ik ⊂ {1, · · · , n}
such that |Ik| = min{k, spark(A)− r} and |Ik ∩ suppX| ≥
k − r + 1, then for any j ∈ Ik, j ∈ suppX if and only if

a∗jP
⊥
R([AIk\{j} B])aj = 0,

where AIk\{j} consists of columns of A whose index belongs
to Ik \ {j}.

Theorem 2 informs us that we only require the success of

partial support recover out of k-sparse estimate, rather than

k − r consecutive correct CS step [4]. In particular, if the

columns of A are in general position, then we can take in-

dex set Ik with |Ik| = min{k,m − r + 1}. Also, if A has

an RIP condition with 0 ≤ δ2k(A) < 1, then we can take

|Ik| = k since r ≤ k. Accordingly, the compressive MUSIC

with optimized partial support is then performed by following

procedure [5].

• [Step 1: compressed sensing] Estimate k indices of

suppX by any MMV compressive sensing algorithm.

Let Ik be the set of indices which are taken in step 1.

• [Step 2: support deletion] For j ∈ Ik, calculate the

quantities ζ(j) = ‖P⊥
R([AIk\{j} B])aj‖2. Make an as-

cending ordering of ζ(j), j ∈ Ik and choose indices

that corresponds the first k − r elements and put these

indices into S and remove the remaining ones.

• [Step 3: support addition] For j ∈ {1, · · · , n} \ S,

calculate the quantities η(j) = a∗jP
⊥
R([AIk−r

B])aj .

Make an asending ordering of η(j), j /∈ S and choose

indices that correspond to the first r elements and put

these indices into S.

3. DETERMINISTIC SUPPORT TRACKING USING
COMPRESSIVE MUSIC

A time varying form noiseless MMV problem is given by set

of MMV problem with time varying k-sparse vectors X(t) ∈
R

n×r that satisfies Y (t) = AX(t) as follows:

min
X(t)

‖X(t)‖0, subject to Y (t) = AX(t), t = 0, 1, · · · . (3)
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Here, for the time varying cases, we assume ‖X(t)‖0 = k(t),
suppX(t) = {1 ≤ i ≤ n : x(t)i �= 0}, and the measurement

matrix Y (t) is full rank, with a fixed rank, i.e. rank(Y (t)) =
r ≤ k(t). Furthermore, the nonzero rows of X are in general

position [4]. Finally, we assume the following slowly varying

sparsity condition for time varying support.

|suppX(t) \ suppX(t− 1)| ≤ r − 1, (4)

for all t = 1, 2, · · · . Then, Theorem 3 shows that if we have

a correct estimation for the initial support I(0) of X(0), then

we can recursively identify the support of time-varying input

signals in a deterministic manner.

Theorem 3. Assume that we have a noiseless MMV prob-
lem for slowly time varying pattern which satisfies (4) and let
k(t) = ‖X(t)‖0 for t = 0, 1, · · · , N . Furthermore we as-
sume that r ≤ k(t) ≤ kmax and 0 ≤ δ2kmax

(A) < 1. Then,
if we have a correct initial support estimation for X(0), then
we can identify the correct support for all t > 0 by applying
the following procedure recursively:

• [Initial support estimation] Let I(t−1) be the support
estimation of X(t− 1);

• [Support deletion] Find an index set I(t)a ⊂ I(t− 1)
such that I(t)a := {j ∈ I(t− 1) :
a∗jP

⊥
R([Y (t) AI(t−1)\{j}])

aj = 0};

• [Support addition] Find an index set I(t) ⊃ I(t)a

such that I(t) = {j : a∗jP⊥
R([AI(t)a Y (t)])aj = 0}.

• Set k̂(t) := |I(t)| be the sparsity estimate for X(t) and
I(t) be the support estimate for X(t).

Proof. See [9].

In the noisy case, when the sparsity are known a priori
and does not change along time, we can apply the procedure

which is given in [9]. If the sparsity changes along time, in

the noisy cases, some of the steps in Theorem 3 should be

modified as follows:

• [Support deletion] Set ε1 > 0 and find an index set

I(t)a such that I(t)a = {j ∈ I(t− 1) :
a∗jP

⊥
R([Y (t) AI1(t)\{j}])

aj < ε1}, where I1(t) ⊂ I(t−1)

such that nrank[Y (t) AI1(t)] is numerically full col-

umn rank.

• [Support addition ] Set ε2 > 0 and find an index set

I(t)b such that I(t)b = {j /∈ I(t)a : a∗jP
⊥
R([Y (t) AI2(t)])

aj

< ε2}, where an index set I2(t) ⊂ I(t)a such that

[Y (t) AI2(t)] is numerically full column rank.

The following theorem gives us a sufficient condition

for threshold values in the large system limit. In a large

system noisy canonical MMV model [4], we assume that

the additional conditions such that A ∈ R
m×n is a random

matrix with i.i.d. N (0, 1/m) entries and the noise N(t) is

independent from X(t). Furthermore, we assume the fol-

lowing quantities exist: ρ := limn→∞ m(n)/n > 0, γ :=
limn→∞ kmax(n)/m(n) > 0 , α := limn→∞ r(n)/kmax(n) ≥
0, and α ≤ 1− ε for some 0 < ε < 1.

Theorem 4. Suppose a minimum SNR satisfies

SNRmin(Y (t)) :=
σmin(B(t))

‖N‖ > 1+
4(κ(B(t)) + 1)

1− γ(1 + α)
, (5)

where σmin(B(t)) is the minimum singular value for B(t),
‖N‖ is the spectral norm of N ∈ R

m×r and B(t) is the noise-
less measurements. Furthermore, we assume that numerical
rank estimations are correct. Then, for the noisy MMV prob-
lem for slowly time varying pattern such that |suppX(t) \
suppX(t − 1)| ≤ r − 1, the threshold values for support
selection criterion and support addition are given by ε1 :=
(1− γ(1 + α))/2 and ε2 := (1− γ)/2.

Proof. See [9].

4. NUMERICAL RESULTS

The first simulation is to demonstrate the performance of the

proposed method to solve the time varying MMV problem

in Eq. (3) for different number of supports changes at each

time. We declared the algorithm as a success if the esti-

mated support is the same as the true suppX , and the suc-

cess rates were averaged for 5000 experiments. The simula-

tion parameters were as follows: m = 40, n = 100, r = 9,

and k ∈ {1, 2, · · · , 30}, respectively. Elements of sensing

matrix A were generated by i.i.d. Gaussian random variable
1√
m
N (0, 1), and Gaussian noise of SNR = 40dB was added

to each measurement vectors. At each time point, the nonzero

part of X(t) is generated by N (0, 1). Fig. 1 shows the recov-

ery rates of time varying MMV problem using support track-

ing method for t = 1, 2, · · · , 5 when the number of changed

supports are 4 and 8. We used CS-MUSIC algorithm with

S-OMP and then applied optimized partial support selection

at t = 1, and time varying supports are estimated by support

tracking method recursively from t = 2 to t = 5. An in-

teresting observation is that the performance of the proposed

method rather improves over time in Fig. 1(a). For maximally

allowed sparsity change rate (in Fig. 1(b)), the recovery rate is

deteriorated as time goes on, but the error does not propagate

beyond certain time period.

Next, we applied the proposed algorithm to target tracking

problem in 2D image and compared it to MUSIC algorithm.

The first row of Fig. 2 indicates the original targets moving

toward the direction of red arrows over time. The second and

third row indicate the results of support tracking method and

MUSIC algorithm, respectively. Each column (from left to

right) indicates the sampled image at t = 1, 13, 27, and t =
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Fig. 1. Recovery rates of time varying MMV problem using

support tracking method when m = 40, n = 100, r = 9,

SNR= 40dB, and t = 1, 2, · · · , 5. The number of changes in

supports at each time point is (a) 4, (b) 8.

41, respectively. Note that the proposed method successfully

follows the movement of original targets, whereas MUSIC

fails.

5. CONCLUSION

This paper proposed a support tracking algorithm to recover

the slowly time varying supports deterministically using mul-

tiple measurement vectors using CS-MUSIC algorithm. The

incorrectly estimated part of supports at previous time can

be removed using a support deletion criterion, after which a

newly update part of support were estimated using support

addition criterion by exploiting the generalized MUSIC crite-

rion. Numerical results demonstrated that the proposed algo-

rithm reliably reconstructs the time varying supports for vari-

ous level of changes .
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