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ABSTRACT
We consider the problem of calibrating a compressed sensing mea-
surement system under the assumption that the decalibration con-
sists in unknown gains on each measure. We focus on blind cali-
bration, using measures performed on a few unknown (but sparse)
signals. A naive formulation of this blind calibration problem, us-
ing �1 minimization, is reminiscent of blind source separation and
dictionary learning, which are known to be highly non-convex and
riddled with local minima. In the considered context, we show that
in fact this formulation can be exactly expressed as a convex opti-
mization problem, and can be solved using off-the-shelf algorithms.
Numerical simulations demonstrate the effectiveness of the approach
even for highly uncalibrated measures, when a sufficient number of
(unknown, but sparse) calibrating signals is provided. We observe
that the success/failure of the approach seems to obey sharp phase
transitions.

Index Terms— compressed sensing; calibration; dictionary
learning; blind signal separation; sparse recovery.

1. INTRODUCTION

Linear inverse problems are ubiquitous in signal and image process-
ing, where they are used to estimate an unknown signal x0 ∈ R

N or
C

N from noisy linear measurements:

y := Mx0 + n ∈ R
m

or C
m.

When m < N this well-known under-determined problem admits
infinitely many solutions, but if x0 is sparse enough it can be es-
timated accurately using sparse regularization. Among many other
techniques, �1 regularization has recently become quite popular and
consists in solving, e.g.,

x̂1 := argmin
x

‖x‖1 s.t. ‖y −Mx‖2 ≤ ε

for a well chosen ε. When the measurement matrix M is per-
fectly known, this approach is known to perform well, and a well-
established body of work characterizes its performance guarantees
for the recovery of vectors x0 that are sufficiently well approx-
imated by highly sparse vectors (see, e.g. [1, 2]). Such sparse
linear regression problems occur in many practical scenarii where
the measurement matrix M is either dictated by the physics of the
measurement system, or designed to have favorable properties with
respect to the recovery of sparse vectors: this is the now famous
compressed sensing (CS) scenario (see, e.g. [3, 4]), where M vol-
untarily reduces dimension, exploiting the sparsity of x0 to capture
it with fewer measurements than Nyquist sampling would require.
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1.1. The decalibration issue

In practical situations, the true measurement system M is not per-
fectly known: it may only have been modeled; or it may have been
measured through a calibration process, but the physical conditions
of the system (such as temperature) may have drifted since this cali-
bration.

Exploiting sparse regularization with an inaccurate estimate M̂
of the true measurement system M is likely to hurt the reconstruc-
tion performance [5]. It is believed to be one of the reasons limiting
the observed performance of several compressed sensing devices. To
address this problem, the most standard existing approaches are:

1. To ignore the problem.
2. To consider decalibration as noise [5]: y ≈ M̂x0 + (M−

M̂)x0. This leads to solving

x̂1 := argmin
x

‖x‖1 s.t. ‖y − M̂x‖2 ≤ ε+ η

with η an estimate of the magnitude of this added noise.

3. Supervised calibration: using known training signals
x1, . . .xL and the corresponding observations y� = Mx� +
n�. Gathering all data in matrices, this takes the form
Y = MX+N. The matrix M is re-estimated, e.g., as

M̂ := argmin
˜M

‖Y − M̃X‖2F .

1.2. Constraints on calibration

It is sometimes useful to constrain the estimated calibration matrix
M̂ to belong to some family M of matrices. For example, it is some-
times known/assumed [6] that the unknown M is sparse in a given
dictionary of measurement matrices {Mk}: M ≈ ∑

k αkMk,
‖α‖0 small. Supervised calibration can then be performed by solv-
ing, e.g., the convex relaxation

min ‖α‖1 s.t. ‖Y −
∑
k

αkMkX‖F ≤ ε.

In this paper, we concentrate on a different scenario where the
measurement matrix is almost known, up to an unknown gain on
each measure: that is to say, M = D0M0 where M0 is a perfectly
known measurement matrix, and D0 is an unknown diagonal matrix
which i-th entry is a (real or complex) gain di applied to the i-th
measure of x0 associated to the i-th line of M0. This leads to

M := {M = DM0,D = diag(di), di �= 0 ∀i}.
Several practical scenarii can be associated with this assumption, for
instance in the case of a microphone array where the frequency re-
sponse of each microphone needs to be individually calibrated [7].
At each frequency, the calibration problem amounts to choosing un-
known gains.
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1.3. Unsupervised / blind sparse calibration

In this paper, we are interested in a blind calibration problem, where
no known training signal can be used. While some training signals x�

have given rise to observed measures y�, the training signals them-
selves are not known. Since one could not hope to calibrate the sys-
tem without some form of knowledge of x�, and the final scenario for

using M̂ will be sparse reconstruction, we assume that the unknown
signals x� are sparse and somehow statistically diverse. In matrix
form, we have Y = D0M0X0 where Y is the m× L (known) ob-
servation matrix, D0 is the square and diagonal matrix of size m for
the (unknown) calibration coefficients, M0 is the m × N (known)
idealized measurement matrix, and X0 is the (unknown) N × L set
of calibration signals upon which the only knowledge we have is that
they are k-sparse.

The objective is to derive a calibration technique that exploits
the knowledge of Y and M0, as well as the sparsity of the unknown

X0, to obtain estimates D̂ and X̂, and finally M̂ = D̂M0. It seems
natural to consider the following optimization problem, where the �1
objective function is intended to promote the sparsity of X:

min
D,X

‖X‖1 s.t.Y = DM0X. (1)

However, this would naively lead to two major issues:

1. Without further constraint on D and/or X, one can scale D
to infinity while letting X go to zero, leading to a trivial but
uninteresting solution;
This is usually solved through a normalization constraint D ∈
D where the set D is bounded;

2. Even with appropriate normalizing constraints on D, this
seems at first a non-convex problem, because of the bilin-
ear nature of the term DM0X, which is linear / convex
separately in D and X but not jointly.

1.4. Relation to previous work

The above issues are well known since they are encountered in blind
source separation [8] and dictionary learning [9, 10]. In a way,
the unsupervised calibration problem can be seen as a simplified in-
stance of dictionary learning, where the general problem has been
expressed, e.g, as [11, 12]

min
Φ,X

‖X‖1 s.t.Y = ΦX.

where the minimum is over Φ ∈ C for a well-chosen bounded set
C (typically, the set of matrices with unit norm columns, or oblique
manifold), but the dictionary Φ is not restricted to be diagonal.

The present issue is also related to the basis mismatch prob-
lem [13], where the signals are truly sparse in a basis that is slightly
different from the chosen representation basis (for instance with a
parametric dictionary using a grid of quantized parameters); or to the
perturbed CS problem [5, 14], where multiplicative noise limits the
effectiveness of CS. In both cases, the “noise” on the measurement
matrix is different for every vector, whereas in the decalibration case
considered here, this (unknown) basis is shared by all vectors.

1.5. Contributions

The main contribution of this paper is (Section 2) to show that, under
proper parametrization and normalization, the considered unsuper-
vised calibration problem (1) can actually be exactly expressed as a
convex optimization problem. Numerically solving this problem is

straightforward using off-the-shelf algorithms. In numerical experi-
ments (Section 3), we demonstrate the effectiveness of this approach
even for highly uncalibrated measurements, whenever a sufficient
number of (unknown but sparse) calibrating signals is provided. Re-
markably, we observe that the success/failure of this problem obeys
some sharp phase transitions, generalizing to the uncalibrated case
the phase transitions studied by Donoho and Tanner [15].

2. PROPOSED APPROACH

As noticed above, the naive formulation of the problem is non-
convex, even with a (convex) normalization constraint.

2.1. Convex formulation

To provide a convex formulation we propose to reparameterize the
problem. Using the simple assumption that the unknown gains di
are nonzero, we can write the constraint Y = DM0X as ΔY =
M0X, where Δ = D−1 = diag(δi).

2.2. Normalization constraint

With this new parametrization, the constraint is convex in the pair
(Δ,X). However, it is trivially satisfied for the pair (0, 0). To avoid
this trivial solution we introduce a convex normalization constraint
Tr(Δ) =

∑
i δi = m. Therefore, the constraint set is D := {D =

diag(di),
∑

i d
−1
i = m}. Note that many other alternatives could

be considered such as δ1 = 1.

2.3. Proposed blind calibration approach

We end up proposing the following unsupervised calibration ap-
proach: given the collection of observed measures Y and the model
of the measurement system M0, we estimate the inverse of the

calibration gains Δ̂ and the training signals X̂ as:

(X̂cal, Δ̂) := argmin
X,Δ

‖X‖1 s.t. ΔY = M0X, Tr(Δ) = m. (2)

This is a convex problem. Note that, because of the arbitrary con-
straint on Δ, Δ and X can only be estimated up to a scaling.

3. EXPERIMENTAL RESULTS

3.1. Considered techniques

We compare two techniques. The proposed approach (2), and an
approach which ignores decalibration

X̂uncal := argmin
X

‖X‖1 s.t. Y = M0X.

Both convex problems are solved using the cvx toolbox [16].

3.2. Data generation

The data was generated by drawing i.i.d. random k-sparse vec-
tors x� with a k-sparse support chosen uniformly at random and
i.i.d. Gaussian nonzero entries. The idealized measurement matrix
M0 was drawn from the Gaussian ensemble of size m × N with
N = 100. Real positive decalibration coefficients were generated
using D0 = diag(exp(N (0, σ2))), where σ is the parameter gov-
erning the amplitude of decalibration. Hence, a given value of σ
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Fig. 1. Empirical phase-transitions with no calibration (top) and proposed calibration (bottom). Overwhelming success (white) or failure
(black) is displayed as a function of dimension parameters δ := m/N (abscissa) and ρ := k/m (ordinate). From left to right: increasing
values of the number L of training signals and decalibration amplitude σ. The thin line is the asymptotic Donoho-Tanner phase transition
curve for known Gaussian measurement matrix. Crosses on the bottom-left figure indicate choices of ( δ, ρ ) for the experiments on Fig. 2.

leads to a decalibration offset in decibels with zero mean and stan-
dard deviation ±20σ/ ln(10) ≈ ±8.7σ dB. The considered mea-
sures were Y = D0M0X, where X was a concatenation of L i.i.d.
k-sparse signals. Experiments were conducted for various configura-
tions of δ := m/N , ρ := k/m, L and σ to measure how accurately
the signals X were recovered with the different approaches. Recov-
ery was considered successful if the normalized cross-correlation be-
tween original and estimated signals is above 99.5 % (note that, due
to the global scaling invariance in Δ and X mentioned in section

2.3, a distance measure between X and X̂ would not be a relevant
indication of success). All the empirical phase transition diagrams
described below report the number of successful estimations, when
the experiment was repeated over 50 random draws.

3.3. Can CS still succeed under calibration errors ?

The first study dealt with estimating how much classical CS was
robust to calibration errors. To do this, we ran numerical experiments
and plotted empirical Donoho-Tanner phase transition [15] (in the
framework presented above). Different decalibration levels σ and
number L of calibration signals have been tested.

The results can be seen on the top line of Fig.1: for small values
of decalibration (σ = .01, σ = .0316), the transition curve is barely
modified : CS seems indeed robust to small calibration errors. How-
ever, as the decalibration increases (σ = .1, i.e. the decalibration
error was of the order ±.9 dB), then the region where CS succeeds
drastically shrinks, and eventually disappears at even larger decali-
bration (σ = .316 and above).

The second line of fig. 1 shows the result of CS under the blind
calibration procedure introduced above. For a large number of noise
levels where the un-calibrated experiment failed, it now succeeds
even with a relatively small number L of training samples (for in-
stance, with L = 21 training samples, it still succeeds at σ = 1,
i.e., a decalibration error of the order ±8.7 dB). Interestingly, for
very small values of decalibration (σ = .01 and below) and too few
training samples, it is better not to perform the blind calibration, as
introducing too many degrees of freedom is more detrimental to the
calibration process than a slight decalibration is to classical CS.

3.4. Choosing the number of training samples

In this section we wish to determine how many training samples L
are needed as a function of the “noise” level σ. We picked differ-
ent values of (δ, ρ) where ideal CS works, and plotted on Fig.2 the
rate of success as a function of decalibration level σ and number of
training samples L, both in the un-calibrated and calibrated cases.

In the uncalibrated case, the columns of X are estimated inde-
pendently. This implies that the probability of recovering L vectors
is the probability of recovering one vector raised to the power of L.
This accounts for the fact that the noise threshold above which esti-
mation fails remains constant as L raises, while, under this threshold,
performances decreases.

Remarkably, the rates of success of calibrated CS obey sharp
corner-like phase transitions. As long as the number of samples L is
higher than a threshold that seems independent on the noise level and
the ambient dimension N (results not shown here), calibration al-
lows CS to work for σ increased by an order of magnitude compared
to the un-calibrated case. Furthermore, in opposition to classical CS,
for values of σ where estimation succeeds, the performance raises
with L, as more samples are available for the calibration. Sharper
transitions are observed for larger values of N . The number of sam-
ples necessary to perform calibrated CS thus seems to be dependent
on ρ and δ only, i.e. the relative number of measurements and the
relative sparsity of the vectors to be reconstructed.

4. CONCLUSION

In this study, we have experimentally observed that even mild decal-
ibration on the measurement matrix can lead to a spectacular failure
of standard CS recovery algorithms. This problem is highly relevant
for engineering applications, as in many cases the observation matrix
is not exactly known. The proposed blind calibration technique, for-
mulated here as a convex optimization problem, is shown to offer a
significantly improved robustness to decalibration: when a sufficient
number of (unknown but sparse) calibration signals are provided, the
algorithm can now succeed even for much larger calibration errors.
Remarkably, the success / failure of this new calibrated CS exhibits
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Fig. 2. Experiments at fixed (δ,ρ), as a function of the number L of training signals and the decalibration amplitude σ. “Uncalibrated”
and “calibrated” refer to the standard and proposed algorithms, respectively. White indicates that the algorithm succeeds in recovering the
solution, and black indicates a failure.

sharp corner-like phase transitions. Being able to compute theoret-
ically the asymptotic boundaries of these new transition diagrams
is a promising extension of this work, together with the extension
to more general decalibration cases. More immediate targets will
be the design of efficient blind calibration algorithms to scale the ap-
proach and test in on real calibration problems arising in compressed
sensing of acoustic fields [7].

5. REFERENCES

[1] J.-J. Fuchs, “On sparse representations in arbitrary redundant
bases,” IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 1341–
1344, June 2004.

[2] Emmanuel Candès, “The restricted isometry property and
its implications for compressed sensing,” Compte Rendus de
l’Academie des Sciences, Paris, Series I, vol. 346, pp. 589–592,
2008.

[3] David L. Donoho, “Compressed sensing,” IEEE Trans. Inform.
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[4] E. J. Candès, J. Romberg, and Terence Tao, “Stable sig-
nal recovery from incomplete and inaccurate measurements,”
Comm. Pure Appl. Math, vol. 59, pp. 1207–1223, 2006.

[5] M.A. Herman and T. Strohmer, “General deviants: An analysis
of perturbations in compressed sensing,” Selected Topics in
Signal Processing, IEEE Journal of, vol. 4, no. 2, pp. 342 –
349, april 2010.

[6] G.E. Pfander, H. Rauhut, and J. Tanner, “Identification of ma-
trices having a sparse representation,” Signal Processing, IEEE
Transactions on, vol. 56, no. 11, pp. 5376–5388, Nov. 2008.
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