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ABSTRACT

In this paper, we consider sparse representations of mul-
tidimensional signals (tensors) by generalizing the one-
dimensional case (vectors). A new greedy algorithm, namely
the Tensor-OMP algorithm, is proposed to compute a block-
sparse representation of a tensor with respect to a Kronecker
basis where the non-zero coefficients are restricted to be lo-
cated within a sub-tensor (block). It is demonstrated, through
simulation examples, the advantage of considering the Kro-
necker structure together with the block-sparsity property
obtaining faster and more precise sparse representations of
tensors compared to the case of applying the classical OMP
(Orthogonal Matching Pursuit).

Index Terms— Kronecker Bases, Orthogonal Matching
Pursuit (OMP), Sparse Representations, Tensors.

1. INTRODUCTION

A concept that underlies the recent developments in the area
of Compressed Sensing [1] is sparsity. It was discovered that
most signals of interest do not cover the entire vector space
and can be well approximated by sparse representations in
a known dictionary. Formally, a signal y ∈ R

I is s-sparse
with respect to the dictionary D ∈ R

I×M if y = Dx, with
||x||0 ≤ s, where typically M ≥ I , s << M and ||x||0 is the
�0 quasi-norm of a vector obtained by counting the number of
nonzero entries.

The implications of the sparsity assumption have recently
driven the development of many exciting applications in mod-
ern signal processing including: new and optimized sensors
using the Compressed Sensing theory [1]; Blind Source Sep-
aration (BSS) algorithms based on the sparsity of morpho-
logical distinguishable source signals [2]; de-noising and in-
painting of images using sparse representation [3], etc.

Another characteristic of real world signals is that they
often have a multidimensional structure where each dimen-
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sion (mode) has a particular physical meaning such as time,
frequency, space, etc. Typical examples of tensor structured
datasets are: video streams (rows, columns, time), images
(rows, columns, channel), EEG records in neuroscience
(channels, frequency, time, trials), etc. Multidimensional
signals can be converted to one-dimensional vectors and
represented in a Kronecker basis, i.e. the product of the dic-
tionaries associated to each one of the modes as proposed in
[4] motivated by real applications (see for example [5]).

For example, most popular transforms applied to a 2-
dimensional signal (2D-image) Y ∈ R

I1×I2 are based on
the application of a transformation of rows followed by a
transformation of columns which means that the signal can
be obtained as

Y = D1XDT
2 , (1.1)

where D1 ∈ R
I1×M1 and D2 ∈ R

I2×M2 are dictionaries as-
sociated to mode-1 (columns) and mode-2 (rows) vectors, and
X is the matrix of coefficients which is typically sparse1. A
basic result of the matrix analysis allows us to write equation
(1.1) in a vectorized form as follows:

y = vec(D1XDT
2 ) = (D2 ⊗D1)x, (1.2)

where ⊗ stands for the Kronecker product and the operation
x = vec(X) converts the matrix X ∈ R

I1×I2 into a vector
x ∈ R

I (I = I1I2). In other words, the signal y = vec(Y)
can be explicitly expressed as a linear combination of ele-
ments of a dictionary with Kronecker structureD = D2⊗D1.

During last years much effort was devoted to the develop-
ment of algorithms for the computation of sparse representa-
tions of vectors y ∈ R

I for a given dictionary D ∈ R
I×M .

Greedy algorithms [6] search for nonzero coefficients sequen-
tially. They are very fast (linear complexity on the signal
size O(I)) compared to more sophisticated algorithms such
as those based on solving a linear constrained optimization
problem (minimizing �1-norm) [7] which have higher com-
plexity (at least cubic complexity O(I3)).

The application of existing vector algorithms to multi-
dimensional signals involves very heavy computations requir-

1Examples of separable transforms used for image processing are: the
Discrete Fourier Transform (DFT), Cosine Transform (DCT), Wavelet Trans-
form (DWT) and others.

2709978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



ing also huge amount of memory storage making them not
practical. In this paper, we demonstrate that we can exploit
the Kronecker structure of dictionaries together with block
sparsity to reduce dramatically the complexity and memory
requirements.

In this work we generalize sparse representations to
higher order tensors and introduce the concept of block spar-
sity. We develop a greedy algorithm for tensors with a block
sparse representation. A selected set of simulation results are
presented demonstrating the benefits of our approach in terms
of computational complexity and accuracy of reconstructions.

2. SPARSE REPRESENTATIONS OF
MULTIDIMENSIONAL SIGNALS (TENSORS)

Given a multidimensional signal (tensor) Y ∈ R
I1×I2...×IN

its n-mode vectors are obtained by fixing every index but
the one in the mode n. The n-mode unfolding matrix
Y(n) ∈ R

In×I1I2...In−1In+1...IN is defined by arranging
all the n-mode vectors as columns of a matrix. Note that
for the 2D case, 1-mode vectors and 2-mode vectors are
columns and rows respectively and the 2-mode unfolding
matrix is the transposed matrix. Given a multidimensional
signal (tensor) Y ∈ R

I1×I2...×IN and a matrix A ∈ R
J×In

the n-mode tensor by matrix product Z = Y ×n A ∈
R

I1×I2...In−1×J×In+1...IN is defined by:

zi1i2...in−1jin+1...iN =

In∑

in=1

yi1i2...iNajin , (2.1)

with ik = 1, 2, ..., Ik (k �= n) and j = 1, 2, ..., J .
The Tucker decomposition [8] is a powerful compressed

format that exploits the linear structure of the unfolding ma-
trices of a tensor, more specifically, when ranks of these
matrices are bounded by rank(Y(n)) ≤ Rn ≤ In (n =
1, 2, ..., N ), then the following multilinear expression holds:

Y = G×1 A1 ×2 A2...×N AN , (2.2)

with G ∈ R
R1×R2×...×Rn and An ∈ R

In×Rn . It is easy to
see that n-mode vectors of a tensor with a Tucker representa-
tion belongs to the span of columns of matrix An. In fact, it
can be shown that equation (2.2) implies [9]

Y(n) = AnG(n)(AN ⊗AN−1...An+1 ⊗An−1...A1)
T .
(2.3)

Let us define the vectorization operator on tensors as vec(Y) ≡

vec(Y(1)) ∈ R
I (I =

∏N

n=1 In), i.e. by stacking all the 1-
mode vectors. Now, we are ready to state the relationship
between the Tucker model and a Kronecker representation
for multidimensional signals.

Lemma 2.1 (Relationship between the Tucker model and a
Kronecker representation). Given Y ∈ R

I1×I2...×IN , X ∈
R

M1×M2...×MN , Dn ∈ R
In×Mn (n = 1, 2, ..., N ), x =

vec(X) and y = vec(Y), the following two representations
are equivalent:

Y = X×1 D1 ×2 D2...×N DN , (2.4)

y = (DN ⊗DN−1 ⊗ ...⊗D1)x, (2.5)

Proof. Using equation (2.3) for mode-1 in equation (2.4) we
have Y(1) = D1X(1)(DN ⊗ DN−1 ⊗ ... ⊗ D2)

T , and by
applying the property of equation (1.2) we finally obtain the
desired result (2.5).

Based on this equivalence, we say that a multidimensional
signal (tensor) Y ∈ R

I1×I2...×IN has a sparse representation
with respect to the n-mode dictionaries Dn (n = 1, 2, ..., N )
if its vectorized version admits a s-sparse representation over
the Kronecker dictionary D = DN ⊗DN−1 ⊗ ... ⊗ D1. In
other words, it has an equivalent Tucker representation (equa-
tion 2.4) with a sparse core tensor X, i.e. with only s nonzero
entries.

In the standard Tucker model, a core tensor G has usually
much smaller size than data tensor Y with Rn << In and
the main objective is to find such decomposition, that is to
compute G and factor matrices An, usually with additional
constraints. In contrast, in our approach the data tensor (mea-
surements) Y and dictionaries Dn are assumed to be known
and our objective is to approximately recover the core tensor
X which is assumed to be very sparse and its size is larger
than the size of Y (Mn ≥ In). It is noted that, in the com-
pressed sensing setting, the n-mode factors Dn correspond to
the products of a sensing matrix by a sparsifying basis in each
mode [4].

In this work, we consider that nonzero entries are located
within a subtensor or block of the core tensor. More specif-
ically, we introduce the following generalized definition of
sparsity where each mode is characterized by having a spe-
cific sparsity profile:

Definition 2.2 (Multidimensional block-sparsity). A multidi-
mensional signal (tensor)Y ∈ R

I1×I2...×IN is (s1, s2, ..., sN)-
block sparse with respect to the factors Dn ∈ R

In×Mn

(n = 1, 2, ..., N ) if it admits a Tucker representation based
only on few sn selected columns of each factor (typically
sn << Mn), i.e. if In = [i1n, i

2
n, ..., i

sn
n ] denote a subset of

indices for mode n (n = 1, 2, ..., N ), then

Y = X×1 D1 ×2 D2 ×3 ...×N DN , (2.6)

with xi1i2...iN = 0 ∀(i1, i2, ..., iN ) /∈ I1 × I2 × ...× IN .

We highlight that the nonzero entries of the core tensor X
belongs to a subtensor (block) defined by X(I1, I2, ..., IN ).
It is easy to see that (s1, s2, ..., sN )-block sparsity of tensor
Y implies that its vectorized version y = vec(Y) is s-sparse
(s = s1s2...sN and I = I1I2...IN ) with respect to the corre-
sponding Kronecker basis. Additionally, it can be proven that
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(s1, s2, ..., sN )-block sparsity implies that its n-mode vectors
are sn-sparse for each n = 1, 2, ..., N with respect to the cor-
responding n-mode dictionary.

3. TENSOR-OMP: A GREEDY ALGORITHM FOR
COMPUTING BLOCK-SPARSE REPRESENTATIONS

Here we develop an efficient greedy type algorithm to find a
(s1, s2, ..., sN )-block sparse representation of a tensor (Def-
inition 2.2) with respect to the factors Dn ∈ R

In×Mn (n =
1, 2, ..., N ). We show that, since the nonzero entries are re-
stricted to be located within a subtensor (block) of size s1 ×
s2× ...×sN , they can be identified very quickly and in much
fewer iterations compared to a classical greedy algorithm: the
Orthogonal Matching Pursuit (OMP) algorithm.

Let us first recall the basic OMP algorithm (see Algorithm
1) which was adapted and studied in [6, 10]. The objective of
this algorithm is to find a sparse representation of a vector
y ∈ R

I over a known Dictionary D ∈ R
I×M . OMP it-

eratively refines a sparse solution by successively identifying
one component that yield the greatest improvement in quality.
An optimized implementation of this algorithm was recently
proposed in [11] where the Cholesky factorization is used to
implement the step 5 efficiently.

Algorithm 1 : Vector-OMP [6]
Require: Dictionary D ∈ RI×M , signal y ∈ RI , sparsity s, tolerance ε
Ensure: Sparse representation y = Dx with ||x||0 ≤ s (x(I) = a)
1: I = [∅], r = y, x = 0, k = 1;
2: while k ≤ s and ||r||2 > ε do
3: ik = argmaxi |d

T

i
r|;

4: I = [I, ik];
5: x(I) = argminu ||D(:,I)u− y||22;
6: r = y −Dx;
7: k = k + 1;
8: end while
9: return I ,a;

Algorithm 2 : Tensor-OMP
Require: n-mode dictionaries {D1,D2, ...,DN} with Dn ∈ RIn×Mn ,

signal Y ∈ R
I1×I2×...×IN , Max. number of coefficients kmax, tol-

erance ε
Ensure: Sparse representation Y = X ×1 D1 ×2 D2 ×3 ... ×N DN

with xi1i2...iN
= 0 ∀(i1, i2, ..., iN ) /∈ I1 × I2 × ... × IN

(X(I1,I2, ...,IN ) = A).
1: In = [∅] (n = 1, 2, ...,N), R = Y, X = 0, k = 1;
2: while |I1||I2|...|IN | < kmax and ||R||F > ε do
3: [ik1 i

k

2 ...i
k

N
] = argmax[i1i2...iN ] |R×1D

T

1 (:, i1)×2 ...×NDT

N
(:

, iN )|;
4: In = In ∪ [ikn] (n = 1, 2, ...,N), Bn = Dn(:,In);
5: a = argmin

u
||(BN ⊗BN−1 ⊗ ...⊗B1)u− y)||22;

6: R = Y −A×1 B1 ×2 B2...×N BN ;
7: k = k + 1;
8: end while
9: return {I1,I2, ...,IN},A;

We can use the same steps of Algorithm 1 for tensors as it
is shown in Algorithm 2. In this case, the step 5 corresponds

to the following general minimization problem:

a = argmin
u

||(BN ⊗BN−1 ⊗ ...⊗B1)u− y)||22, (3.1)

where y ∈ R
I (I =

∏N

n=1 In) is the vectorized version of
tensor Y and Bn ∈ R

In×sn correspond to the sub-matrices
obtained by restricting the n-mode dictionaries to the columns
indicated by indices In, i.e. Bn = Dn(:, In). Then, the
approximation of the signal is given by a Tucker model using
these matrices as factors which, written in vector form is:

ŷ = (BN ⊗BN−1 ⊗ ...⊗B1)a, (3.2)

with a = vec(A) ∈ R
t (t =

∏N

n=1 |In|) being the vector-
ized tensor of nonzero entries (|In| stands for the number of
indices selected in the mode n at iteration k). By defining
B = BN ⊗ BN−1 ⊗ ... ⊗ B1, we see that the least squares
solution of this problem is given by a = [BTB]−1By which
means that [BTB]a = By. This allows us to write

BT
1 B1A(1)(B

T
NBN⊗...⊗BT

2 B2) = BT
1 Y(1)(B

T
N⊗...⊗BT

2 ).
(3.3)

By denoting Z(1) = A×1 I×2 B
T
2 B2...×N BT

NBN and
P = Y ×1 B

T
1 ×2 ...×N BT

N we have

BT
1 B1(Z

(1))(1) = P(1), (3.4)

which can be solved for (Z(1))(1) in a very efficient way
by using a Cholesky factorization of the Hermitian matrix
BT

1 B1. Note that this is a very small problem because size of
matrix BT

1 B1 is (|I1| × |I1|). Now we can use the solution
Z(1) of the subproblem (3.4) and write its mode-2 unfolded
version as follows:

BT
2 B2A(2)(B

T
NBN ⊗ ...⊗BT

3 B3 ⊗ I) = (Z(1))(2), (3.5)

where, by definingZ(2) = A×1I×2I×3B
T
3 B3...×NBT

NBN

leads us to the following simple subproblem also solved effi-
ciently by using the Cholesky factorization of the Hermitian
matrix BT

2 B2:

BT
2 B2(Z

(2))(2) = (Z(1))(2). (3.6)

By subsequently applying this procedure, after N steps we
finally arrive to the desired matrix A(N) which corresponds
to the coefficients for selected indices in the current iteration.

We highlight that Tensor-OMP algorithm not only opti-
mizes the memory storage but also requires far fewer itera-
tions compared to the classical OMP algorithm because the
maximum number of iterations is kmax << s = s1s2...sN ,
with s being the number of nonzero entries within X.

4. SELECTED EXPERIMENTAL RESULTS

In the first experiment we analyzed the computation complex-
ity by running the vector-OMP and our Tensor-OMP algo-
rithms for synthetically generated tensors with block sparse
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Fig. 2. Comparison of Tensor-OMP and Vector-OMP algorithms

representations in Kronecker basis with Gaussian mode dic-
tionaries. We used a fixed mode sparsity μ = sn/Mn = 1/8.
In Fig. 1, the computation time versus the mode size In (a);
and versus the number of dimensions N = 2, 3, ..., 9 (b),
are shown. In a second experiment we analyzed the capa-
bility of the algorithm to recover the correct set of non-zero
coefficients on an ensemble of 500 simulations. In Fig. 2
(a) we compare the percentage of correctly recovered repre-
sentations (same non-zero coefficients) by applying Vector-
OMP and Tensor-OMP. It is interesting to note that Tensor-
OMP outperforms the classical OMP by recovering signifi-
cantly more coefficients and much faster (Fig. 2). Finally, in
Fig 3 we present an application to Compressed Sensing of a
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Fig. 3. Using Tensor-OMP for Compressed Sensing of an astro-
physical 3D image Y ∈ R

256×256×128 . Original and reconstructed
50

th slice corresponding to a velocity of v = −74Km/s. A global
PSNR=34.4dB is obtained in only 109 sec.

3D astrophysical signal2 Y ∈ R
256×256×128 corresponding

to the observation of the neutral hydrogen (HI) 21 cm in a
patch of the sky. This data cube has a sparse representation
using an Orthogonal Daubechies Wavelet Kronecker basis in
N = 3 dimensions. We take measurements by multiplying
each mode with a Gaussian sensing matrix, i.e. Y ×1 S1 ×2

S2 ×3 S3. We obtained a very good reconstruction (global
PSNR = 34.4dB) in only 109 sec by using ε = 0.01 and only
106 measurements (12% of the total number of samples).

5. CONCLUSIONS

We introduced the concept of block sparse representation of
tensors by using the equivalence between the Tucker model
and the representation of vectorized tensors in Kronecker
bases. A fast greedy algorithm was proposed to compute
sparse representations tensors. Selected experimental results
on synthetic as well as on real world signals were presented
demonstrating the advantage of Tensor-OMP algorithm in
terms of computation time and accuracy of reconstructions.
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