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ABSTRACT

In this paper, we propose a robust sparse spectrum fitting

method (RSpSF) for Directions-Of-Arrival (DOA) and power

estimation in the presence of general form of modeling errors

in the array manifold matrix. By exploiting the group sparsity

between the power spectrum and the modeling errors, RSpSF

formulates the estimator as a convex optimization program.

Then, in order to reduce its computational complexity, we

apply a beam-space technique to RSpSF and obtain another

convex estimator, the beam-space RSpSF (BMRSpSF). Sim-

ulation examples are presented to demonstrate the robustness

of the proposed methods to off-grid DOAs and to random ar-

ray calibration errors.

Index Terms— Direction Of Arrival (DOA), sparsity, ro-

bust, beam-space

1. INTRODUCTION

By exploiting sparsity in array data or covariance domains,

a number of DOA estimation methods have emerged with

promising improvements in resolution and accuracy over

many well-established methods. The l1-SVD algorithm [1]

uses the Group-Lasso [2] technique in the data-domain. In

[3], a sparse spatial spectrum estimation method, designated

here as SpSF, is built on a sparse representation of the covari-

ance matrix of uncorrelated sources, to provide both direction

and source power estimates. In the presence of modeling er-

rors in the array manifold matrix, however, the performances

of these methods degrade. This issue was discussed in [4],

in which a method (designated SpSFMU here) using convex

optimization was developed for the special case of off-grid

DOAs.

In this paper, we present a new convex DOA estimator,

which we call the Robust Sparse Spectral Fitting (RSpSF),

which takes the general form of the modeling errors into ac-

count. Examples are presented to demonstrate robustness of
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the method, not only to off-grid DOAs, but also to random ar-

ray calibration errors. The formulation is carried out in both

element and beam-space domains, with the latter providing

advantages of operating in such a domain, including compu-

tational savings.

Consider an antenna array of M elements and assume L
narrow-band far-field signals impinge on the array from direc-

tions θ1, θ2, · · · , θL in the presence of additive white Gaus-

sian noise of variance σ2.

We define an overcomplete dictionary Φ = [a(φ1), · · · ,
a(φK)] ∈ C

M×K , where (φ1, · · · , φK) are the K poten-

tial source directions at the resolution of interest and K �
max(M,L), and a(φk) represents the array response at di-

rection φk. In this framework, Φ is pre-detemined and does

not depend on the actual source locations. Assume that each

of (θ1, · · · , θL) belongs to (φ1, · · · , φK). The tth snapshot

of the array output can be rewritten as:

y(t) = Φs(t) + n(t), (1)

where s(t) = [s1(t), · · · , sK(t)]T is the expanded snapshot

of the arriving signals, whose kth entry is tth sample of the lth
signal if φk = θl, otherwise is 0. Hence s(t) in (1) is sparse.

In effect, the problem of source DOA estimation is replaced

by the estimation problem of the positions of the non-zero

entries in s(t).

In Section 2, the proposed direction finding algorithm is

described. In order to reduce the computational complexity of

RSpSF, a beam-space RSpSF named BMRSpSF, is porposed

in Section 3. In Section 4, the estimation performances of the

proposed methods compared to l1-SVD, SpSF and SpSFMU

by statistical simulations. Finally, Section 5 concludes the

paper.

2. ROBUST SPARSE SPECTRAL FITTING

Assuming uncorrelated and zero-mean sources and using the

model (1), the array covariance matrix, R, is represented by:

R = E(yyH) =

K∑
k=1

pka(φk)a
H(φk) + σ2I, (2)
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where pk = E(|sk|2), E(·) denotes the expectation operation

and [·]H is Hermitian Transpose. From the definition of s,

pk = εl = E(|xl|2) is the power of the lth source if φk = θl
, otherwise pk = 0. This means that �p = [p1, p2, · · · , pK ]T is

sparse (since K � L) and it is just the desired spatial spec-

trum. Thus, if we can estimate p, we can simultaneously esti-

mate the DOAs and the signal strengths. Vectorization of (2)

gives

�R = vec(R) =

K∑
k=1

pk�a(φk) + σ2�I, (3)

where �a(φ) = vec(a(φ)aH(φ)).
In the presence of errors in the steering vectors, we de-

note the true steering vector of the signal coming from the

resolution cell centered at φk by at(φk) and define aT (φk) =
at(φk)

√
pk and �aT (φk) = vec(aT (φk)a

H
T (φk)). Then, we

can write:

�aT (φk) = �a(φk)pk + �ek, (4)

where �ek is the ”error term” between the true model �aT (φk)
and the presumed model �a(φk)pk.

Under the assumption of the sparse spatial spectrum [5],

we can formulate an estimator

min
p

‖�R−
K∑

k=1

�aT (φk)‖2 + γ‖p‖2

s.t. ‖�aT (φk)− �a(φk)pk‖r � βk,

(5)

where γ and βk are the regularization parameters used to pe-

nalize or account for the noise variance and �ek respectively.

However, this formulation introduces too many parameters

to be tuned, which makes it completely impractical. Thus,

by observing that if pk = 0 then βk = 0, we can use the

following function to promote group sparsity between p and

β = [β1, β2, · · · , βK ]T:

K∑
k=1

δk, with δk = ‖pk, βk‖2. (6)

Then we formulate RSpSF as:

min
�aT ,p,β

‖�R−
K∑

k=1

�aT (θk)‖2 + γ
K∑

k=1

δk

s.t. ‖�aT (φk)− �a(φk)pk‖r � βk.

(7)

It is worth emphasizing that (7) is a convex optimization prob-

lem, and thus can be efficiently solved. Note that the selec-

tion of r depends on the distribution of �ek. For example, if ek
follows a Gaussian distribution, r can be 2, but if ek itself is

sparse (e.g. some sensors fail) r = 1 would be a better choice.

To minimize the objective function of (7), RSpSF tends

to smooth between pk and βk if δk > 0. However, since

βk = pk‖�ek‖r, RSpSF leads to a biased estimate of βk or

pk. Therefore, in order to get more accurate estimates of the

signal power, we utilize the idea of Adaptive Lasso [6] [7]

to improve the estimator (7). Assume that p
(1)
k and β

(1)
k are

the initial estimates obtained from (7), respectively. Then we

propose the following improved formulation:

min
�aT ,p,β

‖�R−
K∑

k=1

�aT (θk)‖2 + γ
K∑

k=1

‖ pk

p
(1)
k

,
βk

β
(1)
k

‖2

s.t. ‖�aT (φk)− �a(φk)pk‖2 � βk.

(8)

Formulation (8) is a special case of the adaptive lasso (also

see Equation (8) in [6]). As shown in [7], adaptive Lasso can

reduce the estimation bias, which means that (8) can achieve

more accurate estimates of signal power and DOA than (7).

3. BEAM-SPACE ROBUST SPARSE SPECTRAL
FITTING

Since the Number of Optimization Variable (NOV) of RSpSF

is M × K, its computational complexity may be prohibitive

for real time applications. Thus, we consider a transformation

from element-space to beam-space,

yB(t) = WHΦs(t) +WHn(t) = ΦBs(t) +WHn(t), (9)

where W is the M ×B beamforming matrix. B is the dimen-

sion of beamspace and ΦB = WH[a(φ1), · · · , a(φK)]. De-

fine aB(φk) = WHa(φk) and�aB(φk) = vec(aB(φk)a
H
B(φk)).

In order to keep white noise in the beam-space output, we

select W such that WHW = IB . Here, we use the beam-

forming matrix [8]

W =
1√
K

[
a

(
m

2

K

)
, · · · , a

(
(m+B − 1)

2

K

)]
, (10)

where m denotes the index of the subband under examination

(more details can be found in [8]). Therefore, the covariance

matrix in beam-space is

RB = WHRW + σ2IB

=

K∑
k=1

pk
(
WHa(φk)

) (
aH(φk)W

)
+ σ2IB ,

(11)

and �RB = vec(RB).
Define aBT (φk) = WHat(φk)

√
pk and �aBT (φk) =

vec
(
aBT (φk)a

H
BT (φk)

)
. Then we can get the beam-space

version of RSpSF (BMRSpSF) as

min
�aBT ,p,β

‖�RB −
K∑

k=1

�aBT (θk)‖2 + γ
K∑

k=1

δk

s.t. ‖�aBT (φk)− �aB(φk)pk‖r � βk.

(12)

It is apparent that the computational complexity of RSpS-

F is reduced due to that the NOV of RSpSF decreases from
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Fig. 1. Normalized spectrum of the proposed methods, l1-

SVD, SpSF and SpSFMU for two independent sources. S-

NR=10dB. DOAs: −2.4◦ and 1.6◦

M2×K to B2×K. We have also observed in our simulation-

s that BMRSpSF is much less sensitive to the selection of γ,

another potential advantage of beam-space. Furthermore, this

beam-space technique can be applied in many other sparsity-

exploiting DOA estimation methods, e.g. SpSF and l1-SVD,

to achieve lower computational complexity.

4. SIMULATION RESULTS

In this section, we compare the estimation performance of

the two new methods to those of l1-SVD [1], SpSF [3] and

SpSFMU [4]. Two types of the modeling error in array mani-

fold matrix are considered. The first one is the off-grid DOAs

introduced in [4], and the second one is random calibration

errors.

We consider a uniform linear array (ULA) of M = 8
sensors separated by half a wavelength of the narrowband

sources. Two far-field zero-mean sources (L = 2) impinge on

this array and the noise is AWGN with unit variance. T = 200
snapshots are assumed to be available and the candidate di-

rections are set to be uniformly distributed from −90◦ to 90◦

with 1◦ separation. Assume that ek follows a Gaussian dis-

tribution, then we choose r = 2. B = 3 and m = −1
are used in BMRSpSF. The DOA estimation error is defined

as RMSE = 1
L

∑L
l=1

√
E(θ̂l − θl)2, where θ̂l is the esti-

mate of θl. The normalized spectrum is defined as P =
lg(P/Pmax), where P is the spatial spectrum and Pmax is

the maximum of the P . For l1-SVD, the power estimation is

achieved by least squares using the estimated directions. All

regularization parameters are empirically and independently

chosen for best performance.
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Fig. 2. RMSE of DOA estimation of the proposed method-

s, l1-SVD, SpSF and SpSFMU for two independent sources.

DOAs: −2.4◦ and 1.6◦

4.1. Off-Grid DOAs

In this case, two uncorrelated sources come from −2.4◦ and

1.6◦ with equal SNR of 10dB.

Figure 1 gives an example of the normalized spatial spec-

trum of RSpSF, BMRSpSF l1-SVD, SpSF and SpSFMU. In

this scenario, all methods are able to resolve the sources.

The estimates of RSpSF and BMRSpSF are [−2◦, 2◦] and

[−2◦, 1◦] , and the estimates of l1-SVD, SpSF and SpSF-

MU are [−3◦, 2◦], [−2◦, 2◦] and [−2◦, 2◦] respectively.

The power estimates obtained by RSpSF and BMRSpSF are

[9.74, 9.53] and [9.98, 9.74], which are very close to the

true value and better than those by l1-SVD, SpSF and SpSF-

MU, which are [9.03, 11.8], [8.91, 8.47] and [9.01, 9.31],
respectively.

Figure 2 compares the RMSEs of DOA estimation of each

algorithm for varying SNR. We use 200 Monte Carlo tests for

each SNR with 200 snapshots for each trial. Through this

simulation, it can be seen that RSpSF, BMRSpSF, l1-SVD,

SpSF and SpSFMU have similar resolution thresholds, and

RSpSF can achieve lower RMSE than the other methods. It

is worth mentioning that the time consumption of BMRSpSF

is only half of RSpSF. With larger B, we can get better esti-

mation performance from BMRSpSF, with the price of larger

computational complexity.

4.2. Array Calibration error

We consider that there is random array calibration error which

means that the ”error term” in equation (4) is

�ek(φ) = ppower ∗ (Rep + j ∗ Imp), (13)

where Rep and Imp are generated by standard normal dis-

tribution, j =
√−1 and ppower = 0.1 denotes the strength
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Fig. 3. Normalized spectrum of the proposed methods, SpS-

F and l1-SVD for two independent sources. SNR=10dB.

DOAs: −3◦ and 3◦

of the calibration error. In this scenario, two uncorrelated

sources are placed at −3◦ and 3◦ with SNR = 10dB.

An example of the normalized spatial spectrums of all the

five methods are presented in figure 3 except that SpSFMU

fails in this case. The DOA estimates of RSpSF, BMRSpS-

F, l1-SVD and SpSF are [−3◦, 3◦], [−3◦, 3◦], [−3◦, 4◦]
and [−2◦, 3◦], respectively. The power estimates obtained

by RSpSF, BMRSpSF, l1-SVD and SpSF are [10.69, 10.43],
[9.55, 10.55], [12.09, 9.72] and [11.69, 8.64], respectively.

The RMSEs of DOA estimation shown in figure 4 are ob-

tained by over 200 independent trails. As illustrated, RSpS-

F, BMRSpSF and l1-SVD have similar large error thresholds

which are 5dB above SpSF. Furthermore, RSpSF has better

RMSE than l1-SVD. As in the Off-Grid DOAs setting, the

computational complexity of BMRSpSF is lower than that of

RSpSF.

5. CONCLUSION

In this paper, we proposed a new spatial spectrum estimator,

the robust sparse spectrum fitting (RSpSF) method, which op-

erates with general forms of the modeling errors in the array

manifold matrix. Then, we used the beam-space technique

to reduce the computational complexity of RSpSF. This ap-

proach can also be applied to many other sparsity-exploiting

DOA estimation methods. Through simulations, we demon-

strated the effectiveness of the beam-space technique and

compared the DOA estimation performance of the proposed

methods with l1-SVD, SpSF and SpSFMU. The comparison

showed that the proposed methods can achieve better DOA

estimation performance under the presence of, not only the

off-grid DOAs, but also random array calibration errors.
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