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ABSTRACT

In this paper, we propose the application of low-rank matrix com-
pletion techniques for array signal processing. Specifically, under
the assumption that the number of targets is generally much smaller
than the number of antennas, the received signals can form a low-
rank matrix with noise. According to the recently proposed matrix
completion theory, only a subset of the entries are enough to recover
the whole matrix as long as certain conditions are met, thus the im-
plementation cost of obtaining a matrix could be reduced. We prove
that the matrix formed by the received signals satisfies the condition
for matrix recovery. Moreover, a uniform spatial sampling (USS)
method is proposed, which is easy for hardware implementation and
also could take advantage of the available number of front-end ele-
ments to achieve a better performance. We analytically prove that
the probability of matrix recovery failure under the USS model is
asymptotically equal to that under the Bernoulli model. Simulation
results demonstrate that the matrix recovery performance under the
USS model is very close to that using the uniform model.

Index Terms— Matrix completion, Array signal processing

1. INTRODUCTION

Array signal processing techniques have been widely used in radar,
sonar and other applications. With the increasing number of anten-
na elements, the cost of signal acquisition and processing becomes
higher and higher. For example, an array with hundreds or even a
thousand antenna elements would require the same number of frond-
end hardware units (sampling filter, analog-digital converter etc.)
each corresponds to one element. The need of a huge number of
front-end units presents a serious challenge on the design of the sys-
tem, especially on the design of mobile systems such as air-born
radars where the available space and power are limited.

In this paper, we propose the use of matrix completion to con-
quer the challenge. Matrix completion is a new technique which can
be applied to recover a low-rank matrix from a subset of the matrix
entries [1, 2, 3, 4, 5, 6, 7]. More specifically, with some prior knowl-
edge that a matrix has low rank, if some conditions are satisfied, the
matrix can be recovered from partial matrix entries by minimizing
the nuclear norm of the matrix.

In the scenarios of radar or sonar detection, the number of targets
is generally small. As a result, the received signals, i.e. the superpo-
sition of the reflected signals from the targets plus noise can form a
low-rank matrix. According to the matrix completion theory, only a
few randomly chosen entries of the matrix are enough to recover the
whole matrix. Thus we don’t need to observe all the entries of the
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Fig. 1. structure of signal sampling

matrix. This means it is not necessary to sample all the signals on
each element of the array in each time slot. Therefore the number of
front-end hardware units can be significantly reduced. It also helps
to reduce the energy consumption of the radar dramatically.

The subset of entries must meet certain condition, and there are
samples from each row and column. Sampling according to two
models have been analyzed and shown to be able to recover the ma-
trix satisfactorily [1], the Bernoulli model and the uniform model as
shown in Section 5. In our envisioned application scenarios of array
signals, the number of front-end elements is fixed. To take the full
advantage of the available array elements and for the implementation
simplicity, we propose a uniform spatial sampling model (USS), and
show its performance is comparable to the Bernoulli model and the
uniform model.

The paper is organized as follows. We formulate the problem in
section II, and prove the received signals naturally satisfy the condi-
tion for matrix completion in section III. We analyze the USS model
in section IV, and verify the model through simulations in Section V.
Section VI concludes the work. In this paper, we use the uppercase
letters to denote matrices, bold lowercase letters to denote vectors
and non-bold lowercase letters to denote scalars.

2. PROBLEM FORMULATION

We consider an array with n elements. The discrete-time baseband
transmitted signals can be written as a matrix Z = [z1, . . . , zn]

T

where zi = [zi,1, . . . , zi,n] corresponds to the waveform transmitted
by the ith antenna, (·)T denotes the transpose. Note that the number
of samples of each transmitted signal pulse is also set equal to n.
The transmitter steering vector can be represented as

a(α) =
[
e−j2πf0τ1(α), . . . , e−j2πf0τn(α)

]T
, (1)

where τi(α) is the inter-element time delay difference between each
element to the reference element when the target is at the direction
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α and f0 is the frequency of the carrier. We set the first element of
the array as the reference and assume its τ1(α) is zero.

We adopt the classical Swerling model here and consider a tar-
get with many scatterers which exhibit random, independent and
isotropic scintillation [8]. Assuming there are r targets, we denote
the reflectivity factors of the kth target by ηk. Also we assume that
{η}rk=1 are identically and independently distributed (i.i.d.) as com-
plex Gaussian zero-mean variables with the variance ν2

1 .
As a result, the received signal can be described as

Y =
r∑

k=1

ηk

√
t

n
a(αk)a

T (αk)Z +N (2)

=W +N (3)

where ηk and αk are the parameters correspond to the kth target. t
is the total energy used for the transmission of signals and N is an
i.i.d. circular complex Gaussian noise matrix with variance ν2

2 for
each element.

3. MATRIX COMPLETION

Matrix completion theory says that one can recover an unknown n×
n matrix of low rank r from just about nr log2 n noisy samples with
an error that is proportional to the noise level [4].

Suppose M ∈ C
n×n is the matrix we would like to know. We

use r to denote the rank of M . We only know a few entries of the
matrix, say Mij where (i, j) ∈ Ω. Ω is the randomly chosen subset
of the complete set of entries of the matrix. We use PΩ : Cn×n →
C

n×n to denote the sampling operator which is defined by

[PΩ(X)]ij =

{
Xij , (i, j) ∈ Ω

0, otherwise.
. (4)

In principle, if the singular vectors of M are sufficiently spread,
one could recover the unknown matrix by solving

minimize rank(X) (5)

subject to PΩ(X) = PΩ(M),

where X is the variable matrix. Because the rank minimization prob-
lem is NP-hard, an alternative method has been proposed [2, 1] to
solve the problem as follows:

minimize ‖X‖∗ (6)

subject to PΩ(X) = PΩ(M)

where ‖X‖∗ :=
∑

k σk and σ1, · · · , σr ≥ 0 are the singular val-
ues of X . To formally state the assumption of ‘sufficiently spread’,
we need to introduce more notations. Suppose the singular value
decomposition (SVD) of M can be represented as:

M =
∑

k∈{1,··· ,r}
σkukv

H
k (7)

where the singular vector u1, · · · ,ur,v1, · · · ,vr ∈ C
n are two

sets of orthogonal vectors and (·)H denotes Hermitian transpose. We
denote by PU and PV the orthogonal projections onto the column
and row space of M respectively. Note that

PU =
∑

1≤i≤r

uiu
H
i ; PV =

∑
1≤i≤r

viv
H
i . (8)

Define the matrix E as

E :=
∑

1≤i≤r

uiv
H
i . (9)

To recover the matrix from part of the entries, the vectors ui, vi need
to be ‘incoherent’ in some sense. Formally, the assumptions are as
follows [1].

A1.There exists μ1 > 0 such that for all pairs (a, a′) and (b, b′)∣∣∣〈PUea, PUea′〉 − r

n
1a=a′

∣∣∣ ≤ μ1

√
r

n
(10)∣∣∣〈PV eb, PV eb′〉 − r

n
1b=b′

∣∣∣ ≤ μ1

√
r

n
(11)

where 1 ≤ a, b, a′, b′ ≤ n. Here ea denotes the vector with the ath
element equal to 1 and others equal to zero. |〈A,B〉| is defined as
trace(AHB). 1a=a′ is the indicator function which is equal to 1
when a = a′ and 0 otherwise.

A2.Also there exists μ2 > 0 such that for all (a, b)

|Eab| ≤ μ2

√
r

n
, (12)

where 1 ≤ a, b ≤ n. Eab is the (a, b) entry of the matrix defined by
(9). If the above assumption holds, we say that the matrix M obeys
the strong incoherence property with parameter μ = max{μ1, μ2}.
According to the matrix completion theory, for a fixed rank-r matrix
M with strong incoherence parameter μ, if we observe m entries of
M with their positions taken uniformly at random from the matrix,
M is the unique solution to (6) if there is a numerical constant c such
that

m ≥ cμ2nr log6 n. (13)

4. MATRIX COMPLETION FOR ARRAY SIGNAL MODEL

To determine if matrix completion theory can be applied to array sig-
nal model, we need to check if the matrix formed by the received sig-
nals, i.e., W in (2), meet the matrix recovery conditions in equations
(10), (11) and (12). We mainly follow the ideas in [1]. To proceed,
we will use the following Takagi’s factorization theorem [9].

Takagi’s factorization: If A ∈ C
n×n is symmetric (A = AT ),

then there exists a unitary matrix U ∈ C
n×n and a real nonnegative

diagonal matrix Σ = diag(σ1, · · · , σn) such that A = UΣUT . The
columns of U are an orthonormal set of eigenvectors for AAH and
the corresponding diagonal entries of Σ are the nonnegative square
roots of the corresponding eigenvalues of AAH .

Now we will examine equation (2). To simplify the notation, let

A =
r∑

k=1

ηk

√
t

n
a(αk)a

T (αk). (14)

Obviously A is a symmetric matrix. By Takagi’s factorization theo-
rem, we know that A can be decomposed into UΣUT . Obviously,
it is the singular value decomposition of A. Since Z is usually an
orthogonal matrix, we thus obtain the singular value decomposition
of Y as Y = UY ΣY V H

Y . Firstly, it is easy to verify that

‖uk‖�∞ , ‖vk‖�∞ ≤
√

c/n < ∞ (15)

for a constant c. Then by the Cauchy-Schwarz inequality∣∣∣〈PUea, PUea′〉 − 1a=a′
r

n

∣∣∣ ≤ max
1≤a≤n

‖PUea‖2 (16)
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for a �= a′ and by the Frobenius norm bound

max
1≤a≤n

‖PUea‖2 ≥ 1

n
‖PU‖2F =

r

n
(17)

for a = a′. Also, the assumption (15) leads to

max
1≤a≤n

‖PUea‖2 ≤ cr

n
. (18)

So there exists μ1 such that μ1 ≤ c
√
r. Next, we check with (12).

Again by the Cauchy-Schwarz inequality, we have

|Eab| ≤ max
1≤a≤n

‖PUea‖ max
1≤b≤n

‖PV eb‖ ≤ cr

n
. (19)

Thus there exists μ2 such that μ2 ≤ c
√
r. Therefore we obtain,

μ ≤ c
√
r. Therefore, we proves the received signal in array signal

processing as a matrix obeys the strong incoherence property.

5. UNIFORM SPATIAL SAMPLING

In [4], the authors analyze two models for the sample set Ω. One is
Bernoulli model, and the other is uniform model. Under the Bernoul-
li model, each entry in the matrix is observed with a probability
p = m

n2 , while under the uniform model Ω is sampled uniformly
at random among all subsets of the matrix with the cardinality m.
The two models were shown to have the equivalent performance.
However neither of them is suitable to be used in our structure. If
we fix the number of front-end modules and still apply the unifor-
m model or the Bernoulli model, some samples will be discarded
when the number of samples is greater than the number of front-end
modules and some front-end modules will be left unused when the
number of samples is less than the number of front-end modules. In
either case, the performance will not be optimal. We call such type
of model truncated uniform model.

The desired sampling model should have an equal number of
samples (e.g., the number of front-end elements in the system) in
each time slot so that every front-end module will work in all the
time slots, which allows us to take full advantage of the hardware
resources for better performance and simplicity of the algorithm im-
plementation. To achieve the objective, we propose the uniform s-
patial sampling model. Under this model, we take an equal number
of samples in spatial domain in each time slot. In other words, we
uniformly take m

n
samples from each column of the matrix. If m

n
is

not an integer, we will round it to the smallest integer above it. Thus,
the number of front-end units is set to m

n
, rather than n. With USS

sampling, all front-end hardware modules are always in use.
The key difference between the USS model and the other two

models is that under the USS model, every column is guaranteed to
be sampled at least one entry, but the chance that every row is sam-
pled is lower than the other two. It is clear that if we fail to observe
at least one entry in a row (or a column) of the matrix, we have no
way of recovering the matrix. We now investigate the difference
quantitatively. We will show that the probability of missing an entire
row under the USS model is asympototically equal to that under the
Bernoulli model.

Let F be the event that we miss an entire row. Under the
Bernoulli model, the probability PBer(F ) is (1 − p)n as each
sample is taken independently. Because p = m

n2 , we have

PBer(F ) =

(
n2 −m

n2

)n

. (20)

Under the uniform spatial sampling model, the probability is

PUSS(F ) =

((
n−1
m/n

)
(

n
m/n

)
)n

. (21)

Thus, we just need to compare
n2 −m

n2
and

(
n−1
m/n

)
(

n
m/n

) . By Sterling

approximation, we obtain

(
n−1
m/n

)
(

n
m/n

) ≈

√
n− 1

m
n
2π
(
n− 1− m

n

) (n− 1)n−1(m
n

)m
n (

n− 1− m
n

)n−1−m
n√

n
m
n
2π
(
n− m

n

) nn(m
n

)m
n (

n− m
n

)n−m
n

(22)

=

√
(n− 1)(n− m

n
)

n(n− 1− m
n
)

· (n− 1)n−1(n− m
n
)n−m

n

nn(n− 1− m
n
)n−1−m

n
. (23)

Because m is at least n log n, the two items that we want to

compare become
n2 −m

n2
=

n− log n

n
and

(
n−1
m/n

)
(

n
m/n

) ≈
√

(n− 1)(n− log n)

n(n− 1− log n)
(24)

· (n− 1)n−1(n− log n)n−logn

nn(n− 1− log n)n−1−logn
. (25)

We first show that (25) is smaller than
n− log n

n
. Since n > n −

log n, by the fact that f(x) =
(
x+1
x

)x
is an increasing function, we

have (
n

n− 1

)n−1

≥
(

n− log n

n− log n− 1

)n−logn−1

. (26)

Then move the left term to the right

1 ≥
(
n− 1

n

)n−1 (
n− log n

n− log n− 1

)n−logn−1

. (27)

By further algebraic manipulation, we have

n− log n

n
≥ (n− 1)n−1

nn

(n− log n)n−logn

(n− log n− 1)n−logn−1
(28)

as expected. Next we will show that for any infinitely small ε, we can
find an n′ such that (24) raised to the n-th power is at most greater
than 1 by ε. (√

(n− 1)(n− log n)

n(n− 1− log n)

)n

(29)

=

(
1 +

log n

n2 − n− n log n

)n/2

(30)

<

(
1 +

n1/3

n5/3

)n/2

(31)

=

(
1 +

1

n4/3

)n/2

. (32)
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Taking logarithm

n

2
log

(
1 +

1

n4/3

)
<

n

2

1

n4/3
<

n−1/3

2
. (33)

Therefore, to make n−1/3

2
< log(1 + ε) for any infinitely small ε,

we set

n′ =
(

1

2 log(1 + ε)

)3

(34)

such that for all n > n′, we have

n−1/3

2
< log(1 + ε). (35)

Finally combining (28) and (35), we obtain PUSS(F ) < (1 +
ε)PBer(F ).
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Fig. 2. performance of matrix recovery

6. SIMULATION

We provide simulation results in this section. We use the Augment-
ed Lagrange Multiplier Method [10] to solve the problem. We set
n = 100, so the total number of matrix entries is 10000. The sig-
nal is corrupted by noise with SNR at 10dB. We keep the noise
power at unity and change the signal strength at different SNR lev-
els. m varies from 1000 to 7000 and r = 2, 3, 5. To evaluate
the performance of the proposed USS model in matrix completion,
we define the mean square error(MSE) of the recovered matrix as
1
n2

∑n
i,j=1 (Mij −Xij)

2 where Mij and Xij are true matrix ele-
ment and recovered element respectively. We compare the perfor-
mance under the USS model, the standard uniform model and the
truncated uniform model in Fig 2. We can see that the performance
of the USS model and the standard uniform models are almost the
same for every combination of m and r. As expected, a smaller rank
r would require a lower number of m to achieve the same recov-
ery accuracy. This demonstrates that our uniform spatial sampling
method can be applied to taking signal samples of the matrix used
in array signal processing, which would allow the matrix to be re-
covered. On the other hand, if we still apply the standard uniform
model, as shown in fig 2, the performance of the truncated uniform
model is about 0.3dB worse than the other two. This justifies the
use of our proposed model.

7. CONCLUSION

In this paper, we propose to apply matrix completion theory in array
signal processing to reduce the cost. Specifically, under the assump-
tion that the number of targets is much smaller than the number of
antennas, the received superposed received signals plus noise would
form a low-rank matrix. By using matrix completion theory, we are
able to recover the matrix from only a subset of the entries. There-
fore, lower sampling rate and simplified hardware can be used to get
the signals. We prove that the array signal model satisfy the condi-
tion for matrix recovery. In addition, we propose the uniform spatial
sampling model which can easily be implemented in hardware and
analyze its performance. Simulation shows that much smaller num-
ber of the entries would be enough to recover a 100×100 matrix. In
addition, uniform spatial sampling achieves the same performance
as the standard uniformly random model. Therefore, the proposed
method can be used in array receiver to simplify the implementation
and reduce the system cost and energy.
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