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ABSTRACT 

 
We study a framework of multi-target state initialization employed 
over a tree-like sensor network. Such network provides graceful 
aggregation of target state statistics by exploiting limited 
bandwidth, and makes it possible to approximate the target states 
based on particle filtering defined in the context of Random-Finite-
Set (RFS) theory. This contrasts with conventional multi-target 
filtering approach based on RFS over a star topology. In the tree 
structure, the root sensor node launches the initialization and 
passes messages downward to its leaf sensors. Each leaf sensor 
node collects upward messages from its subsidiary nodes and 
updates target state statistics. We implement the initialization 
process through the Sequential Monte-Carlo (SMC) method, which 
requires the sampling and re-sampling steps different from that in a 
non-RFS type initialization and aggregation.  
 

Index Terms— Initialization, Multi-target state, Random-
finite sets, Multi-Bernoulli, Sensor network 
 

1. INTRODUCTION 
 
We consider a tree-like sensor network [1] that aggregates 
information of multi-target states. The network consists of a root 
node and its sub-tree of leaf nodes. Messages that carry multi-
target state statistics traverse from root downward to the bottom of 
the tree, and reflect upward back to the root (Fig. 1). In this paper 
we use sensor and node interchangeably.  

 
Fig. 1. Downward message pass (left) and upward message pass 
(right). 
      
      We adopt the model of multi-targets along the line of multi-
Bernoulli Random-Finite-Set (RFS) theory [2]. RFS provides a 
comprehensive Bayesian framework when one tackles a point 
pattern with a time-varying number of time-varying random 
variables. As in non-RFS Bayesian filtering, initialization of RFS 
posterior functions is an indispensible step. The result of 
initialization not only allows each sensor to perform target tracking 
locally, but also enables the fusion center to aggregate information 
over a sensor network and perform target tracking centrally.  

      Previous treatments of RFS Bayesian fusion have mostly 
focused on star-like sensor network and ignored the deficit in 
latency. Owing to packet collisions, a star structure may introduce 
latency as worse as a function linear in the number of sensors. The 
latency may be improved to logarithm of the number of sensor in a 
tree structure.  
       Fusion of posterior RFS functions implemented in Sequential 
Monte-Carlo (SMC) method requires sampling and re-sampling 
steps different from its counterpart in non-RFS Bayesian filtering. 
Surprisingly, explicit equations for RFS-type multi-sensor 
posterior fusion have been nearly rare in previous literature [3]. To 
the best of our knowledge, many researchers only hint the use of 
likelihood function factorization, which makes implementation of 
multi-target initialization incomplete to base on SMC method. In 
this paper, we address with these challenges in initialization of 
RFS Bayesian filtering over a sensor tree. 
  
1.1. Multi-Bernoulli RFS 
 
For our application of multiple two dimensional targets tracking, 
we consider a four-tuple  that indicates position and 
velocity (both defined in ). A random target state X takes set-
value in , the space of finite subsets of . Assume M 
possible tracks exist in the multi-target model. Consider a union of 
M independent RFSs , where each  obeys the 
probability density in (1). 
 

                          (1) 

   
      The density function  characterizes a Bernoulli RFS 

 with probability  of being empty and 
probability  of being a singleton . We say 

 is a Multi-Bernoulli RFS with probability 
density in (2) [4]. 

 
 

  

                          (2)  
 
       Let  denote one realization of the multi-target state set to be 
estimated by sensor n with cardinality M(n), 

, and  denote one 
realization of the multi-target measurement set observed by sensor 
n with cardinality N(n), , where 

 represents the random measurement set defined in a sensor-
specific domain. 
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      As the spatial correlation among sensors may not be available, 
each sensor may not infer cross-sensor posterior conditioned on its 
own measurements. Hence, one faces the need to fuse posterior 
density . Then a new challenge arises in RFS Bayesian 
filtering. The choice of importance density for generating particles 
remains elusive in previous RFS literature. Some authors proposed 
to use transition density for sampling/re-sampling in time-evolving 
RFS filtering [3]. However, there is no transition density necessary 
or available in the problem we study herein, which requires a novel 
approach to developing importance density for initialization. 
 
1.2. Multi-Sensor Data Fusion 
 
To fuse data from two sensors (indexed by 1 and 2) at time 0, we 
exploit the respective likelihood functions   and , the prior 

 and a measure  to derive the posterior conditioned on the 
joint data set as shown in (3). 
 

  

  

                                                    (3) 

 
2. MESSAGE PASS 

 
In this section we show how initial multi-target state statistics 
evolve over a sensor tree. We note that the SMC approach to 
realizing particles and weights in RFS Bayesian fusion requires a 
more comprehensive treatment. Let X denote the multi-target state 
to be initialized. All nodes have been installed identical prior 

 with particles and weights 

 to approximate , as shown in (4). 
 

        (4) 

 
2.1. SMC Initialization Per Node 
 
After the root node launches network-wide initialization, each node 
n computes legacy tracks  and measurement-

corrected tracks by evaluating the multi-
Bernoulli approximation of the updated multi-target posterior 

 as follows 
(with similar notations given in [4]).  
 

 ,           (5) 

 ,           (6) 

 ,                                  (7) 

 ,           (8) 

 ,                 (9) 

 ,        (10) 

 ,          (11) 

 ,         (12) 

 ,         (13) 

 .        (14) 

 
Table 1. Definitions of metrics used in initialization per node [4]. 

 detection probability 

 likelihood function 

  

 Poisson clutter intensity 

 
2.2. Downward Aggregation 
 
Consider a parent node P and one of its child (leaf) node C. Node P 
passes multi-target state likelihood  to node C that has 
maintained . Node C has particles and 

weights , which are used to compute weights 

.  
 

 ,        (15) 

 .                                          (16) 

 

       Then node C proceeds to resample  by 
Epanechnikov kernel (with appropriately combined kernel 
functions and well-chosen kernel bandwidth) 

 [2] and updates track probability, 
particles and weights.  
 

                     (17) 

           (18) 

           (19) 

 

 ,                        (20) 
 

                        (21) 
 
     The weights and track probability  are then adapted as 
follows. 
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 ,                        (22) 

 ,                        (23) 

 ,                (24) 

 ,          (25) 

.         (26) 

 
      To make the mean cardinality balanced through the 
aggregation process, we take a heuristic approach to compare 

and . Rescaling of  may be taken when it is 
necessary to equalize  and .  
     We summarize two metrics used in downward aggregation and 
defined in Table 2. 
 
Table 2. Definitions of metrics used in downward aggregation. 

 Epanechnikov kernel density 

 target existence probability 

 
2.3. Upward Aggregation 
 
As downward aggregation reaches the tree bottom, the terminal 
leaf node may pass messages backward. Consider a parent node P 
and the set of its child (lead) nodes . Node P has maintained 

 with particles and weights particles and 

weights , and aggregates multi-target state 

likelihood . The joint likelihood 

 are used to compute weights .  
 

 ,       (27) 

 .                                          (28) 

        Node P then re-samples  by properly 

defined Epanechnikov kernel  (with 
appropriately synergized kernel functions and well-chosen kernel 
bandwidth) and updates track probability, particles and weights.  
 

                     (29) 

           (30) 

           (31) 

 

 ,                        (32) 
 

                        (33) 

 
     The weights and track probability  are then adapted as 
follows. 
 

 ,               (34) 

 ,                        (35) 

 ,                (36) 

 ,          (37) 

 .               (38) 

 
Rescaling of  may be taken when it is necessary to balance 

 and . 
 

3. DYNAMIC ASPECTS IN INITIALIZATION 
 
The framework for initialization in previous sections may be 
generalized to take into account time-evolving aspects as in typical 
RFS Bayesian filtering. We bring about the prerequisites of 
describing multi-target state dynamics and enriching the 
initialization process. The ingredients of formulating Bayesian 
recursion are  and  that evolve over time instance k. Without 
pruning to eliminate insignificant sets, we always have  and  
absorb, in the sense of set union, new components with time. Let 

 denote the transition behavior of multi-target states 
that survive from time  to time ,  denote “new-birth” 
states at time k, and  denote “measurement-corrected” states at 
time k. Thus,  represents the set union 

[2, 4]. 
 Suppose and 

. Then one can conclude

, and 

. The cardinality evolves 
as  [2, 4]. Let  denote the 
“normally detected” observations, and  denote clutter 
observation set at time k. The measurement set at time , , 
represents the following set union . At 
the beginning of recursive RFS Bayesian initialization, the filter 
takes as input the multi-target posterior density  at 
time k, and proceeds according to the prediction step in (39) and 
the update step in (40). We note that here k takes negative values to 
denote the time instances of pre-runs in initialization [2].  
 

          (39) 

                          (40) 

 
4. SIMULATION RESULTS 

 
We have examined the efficacy of our method to initialize the RFS 
posterior function of multi-target states over a sensor tree. (More 
details may be found in [5]). Here only target position states are 
focused, and the effects on velocity states are omitted. Each node 
initially maintains 100 particles for each track, which has track 
probability 0.9. Fig. 2 shows two scenarios: a sensor tree and a 
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one-hop only structure. One target is located in front of the wall (or 
below the “WALL” in Fig. 2). The other target is located behind 
the wall (or above the “WALL” in Fig. 2). The one-hop only 
structure fails to find the hidden target behind the wall (Fig. 2, 
right), but enables the root to initialize states of one target close the 
root and clutters (Fig. 3, right). The appearance of clutters is due to 
insufficient number of sensors participating in aggregation. 
Although the network discovers “probable targets” behind the wall, 
its inference introduces ambiguity owing to the leaf nodes not 
being able to provide reliable posterior functions.         
        A sensor tree supports multi-hop communication (Fig. 2, left) 
and may resolve two target states during initialization (Fig. 3, left). 
We note that in Fig. 2, many leaf nodes are not shown. Each node 
may have multiple leaf nodes, which sustains the initialization 
process even when some leaf nodes fail to pass messages. We 
consider appropriate thresholding, pruning, re-scaling and 
smoothing (e.g. with Epanechnikov kernel) over particles and 
weights to suppress minor peaks.  
   

 

 
Fig. 2. A tree structure (top) supports multi-hop sensor aggregation. 
A one-hop structure (bottom) only supports the root and its 
immediate neighbors. Red arrows indicate established 
communication links. In a tree structure, a link supports downward 
and upward directions, when necessary, but not simultaneously. In 
the one-hop structure, a link only supports upward direction for 
aggregation. 
 

5. CONCLUSIONS 
 
We have developed a framework for initializing RFS type posterior 
functions over a sensor tree, which presents more challenges that 
are due to the need to update track probabilities, particles and 
weights in a more comprehensive manner. We design downward 
and upward aggregation steps that enable the root to launch 
initialization and have inference messages traverse from root to 
tree bottom and vice versa. Following the initialization process, 
each node refines its multi-target RFS density through one-hop 
communication with its neighbors (parent node and/or leaf nodes). 

In a tree structure, a link supports downward and upward directions, 
when necessary, but not simultaneously. In the one-hop structure, a 
link only supports upward direction for aggregation. The tree 
structure allows the network to unveil targets hidden from 
obstacles, hence leveraging the reliability of the initialization 
process. In the one-hop structure, the leaf node only participates in 
the upward aggregation and acquires no knowledge of target states 
from ancestor nodes. More nodes, if not all, in a tree structure may 
gain knowledge from other nodes in the network and form a more 
comprehensive synergy among nodes to initialize particles and 
weights. 

 

 
Fig. 3. A tree structure supports the root to initialize states of two 
targets (top). A one-hop structure may only allow the root to 
initialize states of one target and clutters (bottom).  
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