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ABSTRACT

Applications such as long-term environmental monitoring

and large-scale surveillance demand reliable performance

from sensor nodes while operating within strict energy con-

straints. There is often not enough power for sensors to

make measurements all of the time. In these cases, one must

decide when to run each sensor. To this end, we develop

a one-step optimal sensor-scheduling algorithm based on

expected-utility maximization. “Utility” is an application-

specific measure of the benefit from a given sensor measure-

ment. In sensing environments that can be modeled using a

hidden Markov model, selecting the appropriate combination

of sensors at each time instant enables maximization of the

expected utility while operating within an energy budget.

For some budgets, the utility-based algorithm shows more

than 300% utility gains over a constant duty-cycle scheme

designed to consume the same amount of energy. These

benefits are dependent on the energy budget.

Index Terms— sensor management, utility maximiza-

tion, energy management

1. INTRODUCTION

In state-estimation problems, sensor networks are often used

to make state-observations. In sensor networks with strict en-

ergy constraints, there may not be enough power to run every

sensor all of the time. There has been a fair amount of work

on developing optimal or near-optimal sensor-scheduling

algorithms. Often these sensor-selection problems are bro-

ken into two classes: geographically-based selection on dis-

tributed networks [1] and information-based selection [2].

We bypass this distinction by instead treating each sensor as

having unique, state-dependent performance characteristics.

Thus, the problem becomes that of selecting the k of n state-

dependent sensors that optimize some objective function.

Because Hidden Markov Models (HMMs) have been shown
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to be simple yet accurate models for a variety of applications,

we use them in our formulation as the state-evolution model.

Several different objective functions for sensor-selection

have been suggested in the literature, including Chernoff and

Kullback-Leibler distances [2], information gain [3], [4], and

estimation error [5]. While engineering metrics such as these

are the conventional optimization objectives, there is a large

class of problems for which these metrics do not adequately

express the true system-performance objective. For this rea-

son, we propose using application-specific utility functions to

provide the flexibility required for such problems. Unlike the

stationary utility functions in [1] and [6], the utility in our

formulation is both time- and state-dependent. Because the

utility gained from sensing cannot be known before the sen-

sor has run, we develop theory for sensor-selection based on

maximizing expected utility.

In some applications, the cost to transmit information

may be greater than the cost to run a sensor. By modeling

data transmission as an activity with fixed cost and time-

dependent utility, our framework may additionally be used to

schedule transmission times.

2. PROBLEM FORMULATION

We are interested in estimating the state, θt ∈ {0, 1, . . . ,m},

of a Hidden Markov Model (HMM) with known parameters.

We have n sensors from which we can collect noisy observa-

tions. At a given time, we can run one of 2n possible com-

binations of sensors. Because each combination may have

unique performance characteristics, we treat them as individ-

ual units. We wish to pick the best “sensor collection” at each

time. At time t, sensor collection kt can make an observation

yt ∈ Ok. Note that the observation space for each collec-

tion may be different. Every sensor collection has an energy

cost, c(kt), associated with it. We assume that the observation

model, P (yt|kt, θt), is known and independent accross time

for every collection and every state. Because the true state

is hidden, we use all past observations and sensor choices at

each time to perform state estimation and sensor selection.
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That is, the information we have available at t is

It = (It−1, kt, yt), I−1 = y−1.

Energy contraints restrict us from sensing with every sen-

sor all the time. We wish to balance the utility of a sensor’s

measurement with its energy cost. Utility is a numerical or

ordered metric that captures system performance in terms of

value to the user. Bayes risk is a natural utility function in

HMMs because it utilizes priors and allows for asymmetric

weighting of performance errors. Under the Bayes risk for-

mulation, utility is written as

Ut(It) = max
i∈{0,1,...,m}

m∑

θt=0

RiθtP (θt|It). (1)

Riθt is the reward for deciding state i while the true state is

θt, and P (θt|It) is the posterior.

Because of the Markovian dynamics, the posterior can

be updated at each time using only the previous posterior,

current sensor choice, and current observation. This prop-

erty eliminates the need for explicit knowledge of all previ-

ous observations and sensor choices [7]. That is, we have

Ut(It) = Ūt(P (θt|It), kt, yt). The posterior at time t is cal-

culated using Bayes rule in (2), and then propagated through

the model for time t+ 1 using (3).

P (θt|It) = P (yt|kt, θt) · P (θt|It−1)

P (yt|kt) (2)

P (θt+1 = j|It) =
m∑

i=0

aij · P (θt = i|It), (3)

where aij is the one-step probability of transitioning from

state i to state j. P (θ0|I−1) = πθ
0 , the prior probability of

state θ0.

We wish to maximize the total sum of utilities over a time

horizon, N , subject to an energy constraint, B.

3. UTILITY MAXIMIZATION

We wish to select the sensor whose observation will provide

the most utility. But because Ut(It) cannot be calculated be-
fore we have selected a sensor and made an observation, we

maximize over expected utility.

E[Ut|It−1, kt] =
∑

yt∈Ok

P (yt|kt) · Ut(It)

Note that we have assumed the set of observations is dis-

crete. An analogous equation can be developed for sets of

continuous observations. We wish to find an optimal sensor-

scheduling policy,

π� = (μ�
0(P (θ0|I0)), . . . , μ�

N−1(P (θN−1|IN−1))),

where μ�
t (P (θt|It)) = k�t ∈ {0, 1, . . . , 2n} for all t, that

solves

max
π

N−1∑

t=0

E[Ut|It−1, kt]

s.t.

N−1∑

t=0

E[c(kt)] ≤ B.

(4)

As with most constrained optimization problems, a Lagrange

multiplier can be introduced in order to transform (4) into

an unconstrained optimization problem. However, because

the posterior probability is a continuous variable, it is very

difficult to find an optimal policy. Furthermore, dynamic

programming approximations that find optimal policies for

a quantized posterior become computationally intractable as

the number of states grows. We propose a one-step approxi-

mation inspired by the solution in [8]. For our problem, this

solution turns out to be an approximation of the dynamic

programming algorithm that does not consider future utility

gains. At each time step, we find the sensor combination that

solves

min
kt∈{0,1,...,2n}

−E[Ut|It−1, kt] + λc(kt). (5)

λ can be thought of as the minimum expected-utility-to-

sensor-cost ratio required to justify spending energy at a

given time [9]. We choose λ to come as close to the energy

budget, B, as possible. In almost every case we have tested,

a λ� can be found such that the desired energy budget is met

within a small tolerance. This λ� can be found by searching

over all possible values of λ on a set of training data. The

bisection method described in [10] is an efficient way to con-

duct this search. Once λ� is found, the general procedure for

a given time is as follows: select the optimal sensor-collection

by solving (5), make the chosen observation, update the pos-

terior using (2), determine the best state-decision by solving

(1), and propagate the posterior through the model using (3).

In the next sections, we will discuss the results of our al-

gorithm in a demonstration application.

4. EXPERIMENTAL SETUP

As a test-application, we chose a room-occupancy detector

for lighting-control (that is, estimate the state of occupancy

of a room and turn the lights on/off accordingly). Our frame-

work lends itself to this application for several reasons. First,

office-activity has been successfully modeled using an HMM

previously ([11], [12], and the references therein). We start

with a simple two-state model (room occupied or unoccu-

pied), but this model could be expanded to accommodate ad-

ditional states. The second benefit to this application is the

asymmetric cost of estimation errors; turning the lights off
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SYSTEM SENSORS MIC PIR MIC + PIR

a11 0.985 cost 65 850 915

a00 0.993 PD 0.24 0.77 0.83

R11 1.25 PF 0.07 0.04 0.11

R10 -0.75

R00 0.25

R01 -1.5

Table 1. System Parameters

while someone is in the room is far worse than turning the

lights on when no one is in the room.

We created a 45-minute experiment in an office setting. A

passive infrared (PIR) sensor and a microphone (MIC) pro-

vided data by which to estimate the state of the room. The

estimate was then used to control the room-lighting.

We formed PIR observations by implementing an energy-

detector on 1.02 s frames. For the MIC data, we implemented

a weighted GLRT on the power spectral density of 64 ms

frames. When running both PIR and MIC sensors, we chose

H1 if either the PIR or MIC observed H1. TABLE I summa-

rizes the system parameters for our experimental setup.

The Markov transition probabilities, a11 and a00, were

determined using a transition frequency-counting technique

on the training data. The Bayesian rewards, Riθ, were chosen

to reflect the relative importance of missed detections and

false alarms described at the beginning of this section. The

energy-cost chosen for each sensor is based on its power con-

sumption in μW. Because our algorithm is only affected by

the relative costs of the sensors, it is not necessary to convert

to Joules. For now we ignore the costs of the detection algo-

rithms, but these could easily be included in the sensor costs.

5. EXPERIMENTAL RESULTS

Figure 1 shows performance results for different energy bud-

gets. The biggest performance benefits are observed in heav-

ily energy-starved systems. This is because there is only

enough energy to run the accurate sensors very occasionally.

If these slots are wasted at the wrong times, the measurements

will provide very little utility.

Figure 2 shows the evolution over time of the posterior

probability of state 1 in a system constrained to consume

8.7% of the energy required for continuous operation of both

sensors. The four state transitions from minutes 33 to 39 are

shown. Figure 2 (a) shows the behavior of our algorithm,

while (b) shows the behavior of running each sensor the same

number of times as (a) at a constant duty cycle. The thick

dashed line is an indicator of when the room was actually

occupied. The thin solid line is the posterior probability that

the room is occupied, and the thick solid line shows the cor-

responding state-decision. We assume the system turns the

Fig. 1. Utility increase over constant duty cycle scheme of the

locally optimal scheme for different energy budgets.

lights on whenever it decides state 1.

Sensing causes large jumps in the posterior. When not

sensing, the Markov transition probabilities cause the pos-

terior to evolve toward the steady-state value of 0.3. In

Figure 2 (b), each sensor is run at a constant duty-cycle.

Because it trusts the sensor measurements without regard to

state-structure or utility, we observe several costly missed

detections.

Figure 2 (a) shows that our algorithm results in a “smart

duty-cycle”. Specifically, the PIR is used with a fast duty-

cycle in state 0, while the MIC + PIR is used with a slow duty-

cycle in state 1. This behavior makes it likely that a transition

into state 1 will be detected quickly. Similarly, sensing rarely

in state 1 decreases the possibility of a missed detection, and

thus turning the lights off on someone. This rare-sensing re-

sults in more false alarms, which is exactly the tradeoff the

utility-based reward-structure favors.

As of now no theoretical bounds have been developed

on the utility achievable by a system with arbitrary param-

eters. However, if we assume a perfect sensor is available

(i.e. PD = 1 and PF = 0), then we can compare the per-

formance of our algorithm to that of an oracle that senses

only at the true state-transition times. This oracle represents

the maximum total utility possible under these conditions.

Our algorithm approaches this limit quickly as a function of

energy, achieving 93% of the maximum utility at an energy

budget of 20%.

6. CONCLUSION

Utility functions describe system performance in terms of

value to the user. Because user value is an application-

specific metric, utility functions have more flexibility as
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(a) (b)

Fig. 2. Evolution of the posterior probability and corresponding decision under (a) our locally optimal scheme and (b) a

constant-duty-cycle scheme.

objective functions than standard metrics such as estimation

error. Even though the one-step algorithm ignores the ex-

pected future payoff, we have seen that our method obtains

over 90% of the maximum achievable utility while using only

20% of the total energy budget. The algorithm outperforms

a constant duty-cycle method by significant margins across

all enery levels. In addition, we observed that our algorithm

automatically produces the desired tradeoffs between missed

detections and false alarms on a real data set. Our results

demonstrate great promise for using utility as an objective

function in future applications.
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