
ACCOUNTING FOR TOPOLOGY IN SPREADING CONTAGION IN NON-COMPLETE
NETWORKS

June Zhang and José M.F. Moura
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ABSTRACT

We are interested in investigating the spread of contagion in a net-
work, G, which describes the interactions between the agents in the
system. The topology of this network is often neglected due to the
assumption that each agent is connected with every other agents; this
means that the network topology is a complete graph. While this al-
lows for certain simplifications in the analysis, we fail to gain insight
on the diffusion process for non-complete network topology. In this
paper, we offer a continuous-time Markov chain infection model that
explicitly accounts for the network topology, be it complete or non-
complete. Although we characterize our process using parameters
from epidemiology, our approach can be applied to many applica-
tion domains. We will show how to generate the infinitesimal matrix
that describes the evolution of this process for any topology. We also
develop a general methodology to solve for the equilibrium distribu-
tion by considering symmetries in G. Our results show that network
topologies have dramatic effect on the spread of infections.

Index Terms— continuous-time Markov chain, network, sta-
tionary distribution, isomorphism, infection

1. INTRODUCTION

In the study of infection in epidemiology, trends in social networks,
cascading effects in critical physical infrastructures, the topology of
the network underlying the interactions between the agents is gen-
erally not accounted for [1, 2]. The implicit assumption is that this
network is complete (i.e., every agent is in contact with or impacts
the behavior of every other agent). This is an understandable ap-
proximation since for a complete network, under appropriate scaling
conditions and in the asymptotic limit of large networks (mean field
limit), the evolution of the diffusion process reduces to the study of
the dynamics of a scalar statistics (e.g., fraction of infected agents in
the network) [3, 4].

In this paper, we develop a methodology for studying diffusion
in a network of N agents that explicitly takes into account the net-
work topology. We model the diffusion process by a continuous-time
Markov chain whose states keep track of the states of all the nodes.
We refer to the state of a single agent as the micro state and the state
of all the agents as the network state. The state space of our Markov
model is the set of all possible network states.

First, we will show how to automatically find the infinitesi-
mal matrix, Q, of this process for arbitrary topology based on the
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characteristics of the infection process; we account for 1) heal-
ing, 2) naturally occurring infection, 3) transmitted infection from
infected neighbors. Next, we look to graphs theory and isomor-
phism to define an equivalence relationship between the states of
the Markov process. This reduces the cardinality of the state space
of the Markov process to the cardinality of the state space of the
equivalence classes. In particular, we show how this equivalence
relationship reduces the computation complexity of finding the
stationary distribution of our Markov infection model. Finally,
we illustrate our approach on non-complete network topologies,
namely, with the chain and cycle graph.

2. THE MODEL

2.1. Network of Agents

We represent the network of N agents by an undirected, connected,
unweighted colored graph G = (V,E, P ) with adjacency matrix
A, which is N ×N . The set E defines the topology, and P parti-
tions the vertices into 2 sets: infected (1) and uninfected (0). P =
{V0, V1 | V0 ∪ V1 = V, V0 ∩ V1 = ∅} [5]. For v ∈ V , color(v) =
i if v ∈ Vi.

We assume that the topology remains static. The network state,
n, is the N-tuple of the micro states

n = (color(v0), color(v1), . . . , color(vN−1))

The ith element in n is ni, the micro state which represents the
state of agent i. The set, N , contains all possible network states,
n. Therefore, the cardinality of N is 2N .

Each network state, n ∈ N , induces a corresponding colored
graph Gn = (V,E, Pn). Pn = {V n

0 , V n
1 } where {V n

0 = i |
ni = 0}, {V n

1 = i | ni = 1}. Figure 1 shows some example net-
work states and their induced colored graphs for a chain graph with
4 nodes. Gray nodes are infected nodes; white nodes are uninfected
nodes.

Fig. 1: Examples of Network States and Induced Colored Graphs

2681978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



2.2. Markov Infection Model

We will model the evolution of spreading contagion in G using con-
cepts from the well-known SIS (Susceptible-Infected-Susceptible)
model [3]. Let {X(t)}, (t ≥ 0) be the network state at time t. At
some time t, X(t) = n, where n ∈ N .The process evolves based
on 3 types of events:

1. Healing. Infected nodes heal in a length of time that is expo-
nentially distributed with parameter μ.

2. Exogenous infection. Uninfected nodes may naturally be-
come infected in a length of time that is exponentially dis-
tributed with parameter λ (assuming that there is only one
type of virus).

3. Endogenous infection. Uninfected nodes become infected by
transmission from infected neighbors in a length of time that
is exponentially distributed with parameter γ (assuming that
all infected individuals are equally contagious).

We can normalize by μ so that the process is parameterized by
λ
μ

and γ
μ

.

With these assumptions, we model {X(t)} as a finite state,
continuous-time Markov chain with state space N . Adapting the
notation from [6], we define 2 operators on a state of the Markov
process, n = (n0, n1, . . . nj , . . . , nk, . . . , nN−1)

Tkn = (n0, n1, . . . , nk = 1, . . . , nN−1)

Tj•n = (n0, n1, . . . , nj = 0, . . . , nN−1)

Tk defines the operation that node k is infected. If node k is already
infected, the operator does nothing. Tj• defines the operation that
node j is healed. If node j is already uninfected, the operator does
nothing.

There are two types of state transitions in the Markov process:
1) X(t) jumps to the network state where the kth node (k =

0, 1, . . . , N − 1) is infected with transition rate

q(n, Tkn) =
λ

μ
+

N−1∑
j=0

1(nj = 1)Ajk
γ

μ
, n �= Tkn (1)

where 1(·) is the indicator function, and A = [Ajk] is the adjacency
matrix of G. The first term accounts for exogenous infections, which
does not dependent on G. The second term accounts for endogenous
infections, which is dependent on the topology of the network.

2) X(t) jumps to the network state where the jth node (j =
0, . . . , N − 1) is healed with transition rate:

q(n, Tj•n) = 1, n �= Tj•n (2)

2.3. Infinitesimal Matrix, Q

Using equations (1) and (2), we can generate the infinitesimal matrix,
Q, which is a 2N × 2N matrix. The ith row and jth column of
Q correspond to the decimal scalar representations of the network
states, i, j ∈ N , respectively.

The matrix Q is not symmetric, but it has symmetric struc-
ture, meaning that the nonzero elements are in symmetric locations.
Nonzero entries below the diagonal correspond to X(t) transition-
ing to a state with one less infected individual while nonzero entries
above the diagonal correspond to the Markov process jumping to a
state with an additional infected node.

We can automatically generate Q given a network topology G
and the infection parameters λ

μ
and γ

μ
. With Q, we can find the

equilibrium distribution, π by solving πQ = 0. For large N , this
is computationally intensive. Our next task is to utilize the concept
of isomorphism from graph theory to reduce the state space of our
Markov process.

3. GRAPH ISOMORPHISM AND EQUIVALENCE
CLASSES

Recall that each network state, n, induces a colored graph Gn =
(V,E, Pn). From graph theory, two graphs are considered equiva-
lent if they are isomorphic to each other [5].

Two colored graphs, G = (V,E, P ) and G′ = (V ′, E′, P ′) are
isomorphic, G ∼ G′, if there is a mapping φ : V → V ′ such that

1. φ is a bijection

2. (v1, v2) ∈ E if and only if (φ(v1), φ(v2)) ∈ E′ for all
v1, v2 ∈ V

3. color(v) = color(φ(v)) for all v ∈ V

The first 2 conditions ensure that the uncolored graphs, (V,E)
and (V ′, E′) are isomorphic. The last conditional is the additional
constraint required by colored graph isomorphism.

3.1. Quotient Set of N
We define the equivalence class of the network state, n, as

[n] = {x ∈ N | Gx ∼ Gn}

where ∼ is colored graph isomorphism. The set of equivalence
classes in N is called the quotient set and is denoted as N/ ∼=
{[n1], [n2], . . . , [neq]}, where eq = |N/ ∼ |. The cardinality
of N/ ∼ will depend on the topology of G. However we know
that |N/ ∼ | ≤ 2N since [ni] ∩ [nj] = ∅ for i �= j and N =
[n1] ∪ [n2] ∪ . . . ∪ [neq].

Proposition 1: If x,y ∈ [n], then π(x) = π(y). We will prove
this in the Appendix.

3.2. Finding the Quotient Set, N/ ∼
With the given network, G = (V,E, P ), we can find the quotient
set using the following steps:

1. Initialize: N/ ∼= ∅
2. Find the set of mappings {φ} that gives the set of uncolored

graphs {G′} that is isomorphic to (V,E). This can be done
efficiently with existing algorithm [7]

3. While (N �= ∅)

(a) Pick n ∈ N . It has a corresponding colored graph
Gn = (V,E, Pn) where Pn = {V n

0 , V n
1 }

(b) For each mapping in {φ} and each v ∈ V n
1 , set

color(φ(v)) = 1 to produce colored graphs that are
isomorphic to Gn. These colored graphs correspond to
a set of network states, {m}

(c) Add n to N/ ∼
(d) Remove {n, {m}} from N
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3.3. Equilibrium Distribution over N/ ∼
Since all the network states in the same equivalence class have iden-
tical equilibrium distribution, we can reduce the state space of the
Markov process from N to N/ ∼. The new infinitesimal matrix
Qeq is a eq × eq matrix. We can find the unnormalized stationary
distribution by solving πeqQeq = 0.

We normalize πeq using the relationship

|[n1]|(πeq(n1)) + . . .+ |[neq]|(πeq(neq)) = 1

Depending on G, considering isomorphism can lead to great re-
duction in the number of network states. Figure 2 shows the log-
scaling of |N/ ∼ | for different network topologies. For exam-
ple, in a network where N = 15, |N | = 215 = 32, 768. How-
ever, if the network is a chain structure like in Figure 3a), then
|N/ ∼ | = 16, 512. A cycle graph, as shown in Figure 3b), contains
even more isomorphism mappings and |N/ ∼ | = 1224. Natu-
rally, the graph with the most symmetry is the complete graph where
|N/ ∼ | = N + 1 = 16. For the complete graph, equivalence class
is determined by the number of infected nodes. This is not true for
non-complete graphs.
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Fig. 2: log(|N/ ∼ |) vs. N = 2 to 15 for Different Graph Topolo-
gies

4. RESULTS

We illustrate our model with 2 examples with parameters (N =
4, λ

μ
= 0.1, γ

μ
= 3) for two network topologies: a chain graph,

G1, and a cycle graph, G2, as shown in Figure 3a) and Figure 3b)
respectively.

Figure 3 shows the quotient sets of G1 and G2. By considering
equivalence classes, we can reduce the size of the state space of G1

from 16 to 10 and of G2 from 16 to 6. Table 1 summarizes the
equilibrium distribution of G1 and G2.

The evolution of the infection on the chain and cycle graph ex-
hibit different limiting behavior. Both models have a higher rate of
endogenous infection to healing, so we expect many nodes to be-
come infected. However, the cycle topology has a higher probability
of all nodes being infected than the chain node; since more nodes
are connected together in the cycle graph, it is easier for the virus to
spread amongst the nodes.

We can also see that the limiting probability is not determined
simply by the number of infected nodes. In G1, it is less likely for
node v0 and v2 to be infected simultaneously than for a single node
to be infected. However, in the cycle graph, the probability of any

two nodes being infected is higher than the probability of a single in-
fected node. The equilibrium distribution is determined by the spa-
tial arrangement of infected and non infected nodes. For example,
in the cycle graph it is more likely for connected nodes like v0 and
v1 to be infected at the same time than for unconnected nodes such
as v0 and v3 to be infected simultaneously. There is a predilection
for infected nodes to be clustered and connected together, thereby
giving rise to ‘epidemic’ behavior.

Table 1: Equilibrium distribution for chain and cycle graph (N =
4, λ

μ
= 0.1, γ

μ
= 3)

Network State n [n]G1
πG1(n) [n]G2

πG2(n)

0000 [n1] 0.1882 [n1] 0.0968
1000 [n2] 0.0213 [n2] 0.0097
0100 [n3] 0.0163 [n2] 0.0097
1100 [n4] 0.0498 [n3] 0.0252
0010 [n3] 0.0163 [n2] 0.0097
1010 [n5] 0.0130 [n4] 0.0105
0110 [n6] 0.0375 [n3] 0.0252
1110 [n7] 0.1031 [n5] 0.0735
0001 [n2] 0.0213 [n2] 0.0097
1001 [n8] 0.0100 [n3] 0.0252
0101 [n5] 0.0130 [n4] 0.0105
1101 [n9] 0.0391 [n5] 0.0735
0011 [n4] 0.0498 [n3] 0.0252
1011 [n9] 0.0391 [n5] 0.0735
0111 [n7] 0.1031 [n5] 0.0735
1111 [n10] 0.2790 [n6] 0.4484

(a) Quotient Set of G1 (b) Quotient Set of G2

Fig. 3: Colored Graph Equivalence Classes for G1 and G2

5. CONCLUSION

Using our model, we have shown that the diffusion process is highly
dependent on the network topology. Assuming a complete network
topology will give very different results from any non-complete
topology. We find the infinitesimal matrix that describes the evolu-
tion of the disease, which accounts for infection and healing of the

2683



nodes in any topology. We use the concept of graph isomorphism
to reduce the state space of the Markov process to expedite the
calculation for the stationary distribution.
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A. PROOF OF PROPOSITION 1

If x,x ∈ [n], then π(x) = π(x).
x and x are in the same same equivalence class so there is a

mapping, φ, such that the induced graph Gx = (V,E, Px) is color
isomorphic to Gx = (φ(V ), E, Px). Gx and Gx have the same
adjacency matrix, A. Using Lemma 1.31 from [8], which states
that node vi ∈ Gx, (i = 0, 1, . . . N − 1) and node φ(vi) ∈ Gx

have the same number of neighbors. This means that
∑N−1

k=0 Aki =∑N−1
k=0 Akφ(i).

The equilibrium distribution, π, satisfies the global balance
equation:

π(x)

(
N−1∑
k=0

q(x, Tkx) +

N−1∑
j=0

q(x, Tj•x)

)
= (3)

N−1∑
k=0

π(Tkx)q(Tkx,x) +

N−1∑
j=0

π(Tj•x)q(Tj•x,x)

π(x)

⎛
⎝ N−1∑

φ(k)=0

q(x, Tφ(k)x) +

N−1∑
φ(j)=0

q(x, Tφ(j)•x)

⎞
⎠ = (4)

N−1∑
φ(k)=0

π(Tφ(k)x)q(Tφ(k)x,x)

+

N−1∑
φ(j)=0

π(Tφ(j)•x)q(Tφ(j)•x,x)

Note that Tkx and Tφ(k)x are in the same equivalence class.
The Tk operator represents a coloring of the kth node in Gx while
Tφ(k) represents a coloring of the φ(k)th node in Gx. This coloring,
together with the mapping φ, satisfy the 3 conditions of color iso-
morphism. Similarly, Tj•x and Tφ(j)•x are in the same equivalence
class.

Consider the transition rates:

q(x, Tj•x) = 1 = q(x, Tφ(j)•x)

q(x, Tkx) =
λ

μ
+

N−1∑
j=0

1(nj = 1)Ajk
γ

μ

=
λ

μ
+

N−1∑
j=0

1(nj = 1)Ajφ(k)
γ

μ

= q(x, Tφ(k)x)

By the same reasoning,

q(Tkx,x) = q(Tφ(k)x,x)

q(Tj•x,x) = q(Tφ(j)•x,x)

Equations (3) and (4) represents two linear systems with iden-
tical coefficients. Since finite state Markov process always has an
unique equilibrium distribution, the solution to the linear systems
must be unique as well. Therefore, π(x) = π(x) when x,x ∈ [n].

A.1. Finite State Continuous-Time Markov Process Review

We model the diffusion process by a finite state continuous-time
Markov chain, {X(t)}(t ≥ 0) with states {0, 1, . . .M}. We will
only consider an aperiodic, irreducible, time homogenous, finite
state Markov process [9]. The process is characterized by

q(i, j) = lim
τ→0

Pij(τ)

τ
, j �= i

= 0, j = i

where Pij(t) is the transition probability of going from state i to
state j in t duration. It is also the is the {i, j} entry in the matrix
P(t). Have

q(i) =
M∑

j=0,j �=i

q(i, j)

The rates, q(i) and q(i, j), provide us with the infinitesimal descrip-
tion of the Markov process. The amount of time that the process will
remain in state i is exponentially distributed with parameter q(i). We
can express the transition rates as the infinitesimal matrix, Q, where

Q =

⎡
⎢⎢⎢⎣

−q(0) q(0, 1) . . . q(0,M)
q(1, 0) −q(1) . . . q(1,M)

...
q(M, 0) q(M, 1) . . . −q(M)

⎤
⎥⎥⎥⎦

The differential equation that governs the evolution of P(t) is

P′(t) = P(t)Q

We can find π by solving the system of equations

0 = πQ =
[
π(0) π(1) . . . π(M)

]
Q

with the additional constraint that
∑M

i=0 π(i) = 1.
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