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ABSTRACT

We consider the problem of distributed average consensus in a sensor
network where sensors exchange quantized information with their
neighbors. In particular, we exploit the increasing correlation be-
tween the exchanged values throughout the iterations of the con-
sensus algorithm in order to design a novel quantization scheme,
particularly efficient at low bit rates. We implement a low complex-
ity, uniform quantizer in each sensor, where refined quantization is
achieved by progressively reducing the quantization intervals with
the convergence of the consensus algorithm. We propose a recur-
rence relation for computing the quantization parameters that de-
pend on the network topology and the communication rate. Finally,
simulation results demonstrate the effectiveness of the progressive
quantization scheme that leads to the consensus solution even at low
communication rate.

Index Terms— Distributed average consensus, sensor net-
works, progressive quantization.

1. INTRODUCTION

Distributed consensus algorithms have attracted a lot of research in-
terest due to their applications in wireless network systems. They
are mainly used in ad-hoc sensor networks in order to compute the
global average of sensor data in a distributed fashion, using only
local inter-sensor communication. Some of their most important
applications include distributed coordination and synchronization in
multi-agent systems, distributed estimation, distributed classification
and distributed control problems.

While in theory convergence to the global average is mostly de-
pendent on the sensor network topology, the performance of dis-
tributed average consensus algorithms is largely connected to the
power or communication constraints and limited precision opera-
tions in practical systems. In general, the information exchanged by
the network nodes has to be quantized prior to transmission due to
limited communication bandwidth and limited computational power.
However, this quantization process induces some quantization noise
that is accumulated throughout the iterative consensus algorithm and
affects its convergence, leading to significant performance degrada-
tion [1].

A few works have been proposed recently to address the prob-
lem of quantization in distributed average consensus. In particular,
it was shown in [1] that if the quantization noise is modeled as white
and additive with fixed variance then consensus cannot be achieved.
The authors in [2] propose a probabilistic quantization scheme that

‡ Current address: Google Research, Zurich. Email:
kokiopou@google.com

reaches consensus almost surely to a random variable whose ex-
pected value is equal to the desired average. Moreover, Kashyap et
al. [3] designed an average consensus algorithm with the additional
constraint that the states of the agents are integers while the authors
in [4] introduced a predictive coding scheme that exploits the tem-
poral correlation among successive iterations. On the other hand,
modifications of the classical consensus algorithm have been pro-
posed in [5, 6] where the average is preserved at each iteration with
good convergence properties. In general, all the above mentioned
algorithms either maintain the average value in the network but can-
not reach a consensus effectively, or converge to a random variable
that is not always the target average value. More recently, quantiza-
tion strategies have been proposed in [7] and [8] that maintain the
average of the initial states and at the same time converge asymptot-
ically to the true average value. Although these last two solutions
perform quite well at high bit rates, the convergence rate appears to
be slow when the quantization is coarse. In addition, the stability of
both quantization schemes depends on the choice of globally defined
parameters that do not seem easy to determine a priori.

In this paper, we address the problem of average consensus
with quantized communication and we overcome the limitations of
the above algorithms by designing a novel progressive quantization
scheme that limits the quantization noise and, contrary to the ex-
isting works, leads to faster convergence to the average value even
at low bit rates. Motivated by the observation that the correlation
between the values communicated by the nodes increases with the
consensus iterations, we propose to progressively reduce the range
of the quantizer in order to refine the information exchanged in the
network. The proposed quantization scheme is consistent and of re-
duced complexity since at each iteration all the nodes implement the
same quantization scheme, with the same parameters. We describe a
method for computing offline the parameters of the quantizer, which
depend on the network topology and the communication constraints.
We illustrate the performance of the proposed scheme through simu-
lations, which confirm that consensus to the true average is achieved
even in the case where the information is hardly quantized.

2. PROGRESSIVE QUANTIZER FOR DISTRIBUTED
AVERAGE CONSENSUS

We consider a sensor network topology that is modeled as a
weighted, undirected graph G = (V, E), where V ∈ {1, . . . ,m}
represents the sensor nodes and m = |V | denotes the number of
nodes. An edge denoted by an unordered pair {i, j} ∈ E , represents
a link between two sensor nodes i and j that communicate with each
other. Moreover, a positive weight W (i, j) > 0 is assigned to each
edge if {i, j} ∈ E . The set of neighbors for node i is finally denoted
as Ni = {j|{i, j} ∈ E}.

2677978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



The node states over the network at time t can be expressed as
a vector zt = [zt(1), . . . , zt(m)]T , where zt(i) represents a real
scalar assigned to node i at time t. The distributed average con-
sensus problem consists in computing iteratively at every node the
average μ = 1

m

∑m
i=0 z0(i), where z0(i) is the initial state at sensor

i. Under ideal conditions, consensus can be achieved by linear itera-
tions of the form zt+1 = Wzt, where the symmetric weight matrix
W satisfies the conditions that are required to achieve asymptotic
average consensus [9], expressed as

1TW = 1T , W1 = 1, ρ(W − 11T /m) < 1, (1)

with ρ(·) the spectral radius of the matrix and 1 the vector of ones.

When the communication rate is limited, the value zt(i) of a
sensor node i at each step t is quantized prior to its transmission to
neighbor nodes. The quantized value ẑt(i) can be written as

ẑt(i) = zt(i) + εt(i), (2)

where εt(i) models the additive quantization noise of sensor i at
iteration t. We assume that the initial sensors’ states lie in a finite
interval, with z

(min)
0 , z

(max)
0 the minimum and the maximum values

of the interval respectively. In the case of a n-bit uniform quantizer,

the quantized value can be written as ẑt(i) =

⌊
zt(i)−z

(min)
0

Δ

⌋
·Δ+

Δ
2
+ z

(min)
0 . The parameter Δ = S/2n is the quantization step-size

while the size of the interval, i.e., the quantization range, is S =

z
(max)
0 − z

(min)
0 .

In the presence of quantization noise, we assume the following
linear iterations that preserve the average of the initial states [5]

zt+1 = zt + (W − I)ẑt, (3)

where I is the identity matrix. An analytical expression of Eq.(3)
shows that the quantization error propagates through the iterations
of the consensus algorithm. More specifically, the states zt+1, ẑt are
expressed as

ẑt = W tz0 +

t−1∑
s=0

W s(W − I)εt−s−1 + εt

zt+1 = W t+1z0 +
t∑

s=0

W s(W − I)εt−s.

(4)

We note that the effect of the accumulated quantization noise be-
comes particularly significant at low bit rate. However, as the num-
ber of iterations increases, the correlation between the sensors’ states
increases and the transmitted values fall into an interval of decreas-
ing size. Hence, quantization in the range S results in a waste of bits
or in limited precision that prevents the algorithm to converge to the
true average value. We therefore propose a new progressive quanti-
zation algorithm that adapts the quantization step-size as the number
of linear iterations increases. We keep a simple uniform quantizer
with a fixed number of bits, but we reduce the quantization range so
that quantization becomes finer along the iterations.

In particular, we denote as St(i) the quantization range of the
proposed scheme in node i at time t. This range is adapted in each
sensor as the iterations proceed and decreases over time. The quan-
tizer is further centered around the previously quantized value of
the consensus algorithm ẑt−1(i). In more details, the sensor i en-
codes its state zt+1(i) by using a quantization range that is defined as
[ẑt(i)−St+1(i)/2, ẑt(i)+St+1(i)/2], where St+1(i) > 0. The data

is uniformly quantized in this reduced range, which leads to a step-

size Δt+1 =
St+1(i)

2n
that decreases over time. The values falling out

of the quantization range are clipped and coded to the nearest quan-
tizer value. The size of the quantization range however stays identi-
cal for all the sensors, independently of their previous state and their
position in the network (i.e., St+1(i) = St+1, ∀i = 1, . . . ,m).
The latter simplifies the design of the quantizer as the only param-
eter to be determined is the size of the quantization range St+1 at
each iteration. Since each neighbor node j ∈ Ni knows the value
ẑt(i) received at the previous iteration, it is able to perform inverse
quantization and to compute correctly the value ẑt+1(i). We call the
proposed quantization scheme Progressive Quantizer.

3. DESIGN OF THE PARAMETERS OF THE
PROGRESSIVE QUANTIZER

In this section, we propose a constructive method to compute the size
of the quantization range St+1 a priori, based on the properties of the
network topology and the communication constraints. For effective
quantization, the quantization range should be chosen such that the
values computed in the nodes fall with high probability within the
quantization range. Thus, for each sensor i, the value zt+1(i) should
fall within the range [ẑt(i)− St+1/2, ẑt(i) + St+1/2]. If this is not
the case, it is mapped to the representative value of the closest inter-
val. Hence, we need to compute St+1 such that the absolute differ-
ence between two consecutive sensor states is, with high probability,
upper-bounded by St+1/2. One way to estimate St+1 is to bound
the mean square difference between two successive values such that

E[‖zt+1 − ẑt‖2] ≤ m

(
St+1

2

)2

. (5)

In this work, ‖ · ‖ denotes the L2 norm. Since the quantization
range should be positive, without loss of generality, we pose first
St+1 = 2 · e−βt+1 . Hence determining the size of the quantization
range becomes equivalent to computing βt+1. In the sequel, we de-
rive first an upper-bound of E[‖zt+1 − ẑt‖2] that depends on the
previous {β1, ..., βt} values. In order to derive the upper-bound we
have exploited the properties of the matrix W and we have modeled
the quantization noise samples εt(i) in (2) as (spatially and tempo-
rally) independent random variables that are uniformly distributed
with zero mean and variance Δ2

t/12 [10]. In particular, the upper-
bound of E[‖zt+1 − ẑt‖2] follows from the following Proposition
whose technical details are provided in [11], due to lack of space.

Proposition 1 Let ẑt and zt+1 defined as in (4). Let also λ2 :=

ρ(W − 11T

m
) and λmin be the smallest algebraically eigenvalue of

W . Then, it holds that

E[‖zt+1 − ẑt‖2] ≤ ‖z0‖2λ2t
2 (1− λmin)

2

+ (1− λmin)
2

t−1∑
s=0

‖W s(W − I)‖2mS2
t−s−1

22n · 12

+ (2− λmin)
2m

S2
t

22n · 12 .
(6)

Eqs. (5) and (6) along with the fact that ‖z0‖2 ≤ m‖z0‖2∞ and
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St+1 = 2 · e−βt+1 , imply that

e−2βt+1 = ‖z0‖2∞λ2t
2 (1− λmin)

2

+ (1− λmin)
2

t−1∑
s=0

‖W s(W − I)‖2 e
−2βt−s−1

22n · 3

+ (2− λmin)
2 e−2βt

22n · 3 , t ≥ 1.

(7)

The formula above leads to a recursive computation of βt+1 at
each time step t+1 of the consensus algorithm. As boundary condi-
tions for the recursion, we first compute β0 using the initial range of
the quantizer i.e., 2e−β0 = Δ0 and next compute β1 from a simpli-
fied version of (7) where the intermediate term from the right hand
side is dropped. Finally, we note that the values of the quantization
range depend on the convergence rate λ2 of the average consensus
algorithm in the absence of quantization noise, on the absolute max-

imum value of the initial data ‖z0‖2∞ = max{|z(min)
0 |, |z(max)

0 |},
on the network topology W and on the number of quantization bits
n.

4. SIMULATION RESULTS

In this section we provide simulation results that verify the effec-
tiveness of the Progressive Quantizer. We consider a network of
40 sensors (i.e., m = 40) following the random geographic graph
model, i.e., the sensors are uniformly random distributed over the
unit square [0, 1]× [0, 1]. We assume that two neighbor sensors are

connected if their Euclidean distance is less than r =
√

(logm)/m,
which ensures connectivity with high probability [12]. We assume
static network topologies, which implies that the edge set does
not change over the iterations. As an illustration, we consider the
Metropolis weight matrice [9] defined as:

W [i, j] =

⎧⎨
⎩

1
1+max{d(i),d(j)} , if {i, j} ∈ E
1−∑

(i,k)∈E W [i, k], if i = j

0, otherwise,

where d(i) denotes the degree of the ith sensor.

4.1. Evolution of the quantization range

We first validate the decreasing behavior of the quantization range
St = 2 · e−βt over the iterations. For implementation issues, we fix
a parameter δ = 10−16. At iteration t, if the quantization range St

becomes smaller than δ, we quantize with the range computed at the
previous iteration i.e., we set St = St−1. We compute recursively
the values {β1, ..., βt+1} from Eq.(7) for a random network topol-
ogy with initial states in the range [0, 1] and communication rates of
n = [2, 4, 6] bits. We observe in Fig.1(a) that the value of βt appears
to increase linearly with the number of iterations, which implies that
Eq.(7) leads to a size of the quantization range that decreases expo-
nentially over time. Finally, we notice that the slope of the function
βt is independent of the bitrate, while the y-intercept value depends
on the number of quantization bits.

4.2. Average consensus performance of the Progressive Quan-
tizer

We first compare the proposed quantization scheme (ProgQ) with a
baseline uniform quantizer with a constant range S = 1 (UnifQ).

Fig. 1(b) illustrates the average consensus performance correspond-
ing to the absolute error ‖zt − μ1‖2 versus the number of iterations
for n = [2, 4, 6] bits. In order to obtain statistically meaningful
results we average the error over 200 random realizations of the net-
work topology with random initial values. Observe that the perfor-
mance of the proposed quantization scheme is very satisfactory even
at a very low bit rate (2 bits) within a few iterations. In particular,
the error ‖zt−μ1‖2 shows a decreasing behavior over the iterations,
which means that the quantizer does not saturate. It rather follows
the evolution of the average consensus algorithm in the noiseless
case. On the other hand, the performance of the uniform quantizer
with a constant range saturates even at high bit rate.

In addition, we compare the proposed Progressive Quantizer
with (a) the adaptive quantizer (AdaptQ) [7] and (b) the zoom in-
zoom out uniform encoder (ZoomQ) [8]. In particular, the scheme
proposed in [7] is based on the Delta modulation with variable step-
size. The step-size is adapted throughout the iterations based on
the previously sent bits and a constant K. However, the scheme is
quite sensitive to the value of K and the performance can deteriorate
for non-carefully chosen values. On the other hand, the differen-
tial encoding scheme proposed in [8] uses a uniform quantizer and
the transmitted value is the quantized difference of the current value
from the previous estimate, scaled by a factor f that is adapted over
time. This factor is similar to the step-size of [7] and it grows or
decreases depending on the difference between the new state zt+1

and the previously quantized state ẑt. The decrease or the increase
depends on the constants kin and kout respectively and the way that
these constants have to be determined seems to be an open ques-
tion. In our experiments, for the first scheme (AdaptQ) we choose
K = 1.2 as defined in [7], while for the second scheme (ZoomQ) we
choose the parameters kin = 0.5, kout = 2 and the scaling factor
f0 = 0.5 as defined in [8]. Fig 2 illustrates the obtained results. No-
tice that our scheme outperforms both AdaptQ [7] and ZoomQ [8].
AdaptQ appears to saturate especially for a small number of bits.
The performance of ZoomQ seems to be quite good for 4 and 6 bits,
but it suffers at low bit rate.

Our scheme bear some resemblance with these two schemes in
the sense that we also propose to adapt a scaling function with the
difference that the scaling function in our case has a very specific
definition that consists of the sensors’ dynamic range. Moreover, we
impose that range to consistently decrease, which is intuitively sup-
ported by the increasing correlation of the sensors’ states throughout
the iterations. The latter is done by taking into consideration both the
available number of bits and the converging behavior of the average
consensus algorithm. Finally, the a priori estimation of the quanti-
zation range based on the recursive Eq.(7) reduces the complexity
of the quantizer in comparison to the previously mentioned schemes
where the step-size is adapted online, independently for each sensor.

5. CONCLUSIONS

In this paper, we have proposed a novel quantization scheme for
solving the average consensus problem when sensors exchange
quantized state information. In particular, our scheme is based
on progressively reducing the range of a uniform quantizer with
constant bit rate. The proposed quantizer exploits efficiently the
available number of bits without increasing the communication
complexity over the network. Simulation results show the effective-
ness of our scheme that outperforms the existing solutions and leads
to convergence to the average value even at low bit rates.
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Fig. 1. (a) Evolution of the βt values over the iterations. (b) Average consensus performance of the proposed quantization scheme (ProgQ)
vs uniform quantizer with a constant range (UnifQ) for 2, 4 and 6 bits.
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Fig. 2. Average consensus performance of the proposed quantization scheme (ProgQ) vs (a) adaptive quantizer (AdaptQ) [7] and (b) zoom-in,
zoom-out uniform quantizer (ZoomQ) [8] for 2, 4 and 6 bits.
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