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Abstract—We study the use of distributed average consensus
and compressed sensing to perform decentralized estimation
of a field measured by networked sensors. We examine field
reconstruction of multiple acoustic sources from isotropic mag-
nitude measurements. Compressed projections of global network
observations are spread throughout the network using consensus,
after which all nodes may invert the source field using /; recovery
methods. To approximate the problem as a discrete linear system,
the space of source locations is quantized, introducing model
error. We propose a model-robust adaptation to basis pursuit to
control for the error arising from the spatial quantization. We
show conditions for stability of the robust estimator, providing
bounds on the reconstruction error based on perturbation con-
stants, source magnitudes, and mutual coherence. Experiments
show that the two types of robust estimators successfully address
infeasibility and consistency issues that arise in basis pursuit for
spatially quantized acoustic sources.

Index Terms—distributed estimation, consensus, compressed
sensing, noise-aware basis pursuit, model robust estimation

I. INTRODUCTION

A major problem in the area of distributed sensor networks
is the decentralized estimation of a physical field. Networks
of coordinating cheap sensors are quick to deploy and can
accomplish tasks that would challenge a single powerful,
specialized sensor. However, fusing information in a large
sensor network in ways that conserve energy, are robust to
sensor failure, and avoid data and communication bottle-
necks remains a challenging problem. Our goal is to study
decentralized estimation methods that scale with increasing
numbers of sensors for reconstructing fields generated by
sparse underlying phenomena.

We pursue a method, studied in [1], [2], [3], that uses
consensus to distribute low dimensional projections of global
sensor observations throughout the network. After a phase of
iterative local message passing, each node has a copy of the
compressed observation vector and can invert the relationship
to estimate the sparse field vector. We call this approach
field inversion by consensus and compressed sensing (FICCS).
We test these ideas on the application of localizing multiple
concurrent acoustic sources observed by distributed isotropic
sensors with simplified physical models. This example is
illustrative due to its low single-sensor observability, neces-
sitating coordination among the sensors to achieve acceptable
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reconstruction and detection performance.

This approach to localizing acoustic sources differs from
other decentralized approaches, e.g., [4], [5], since it handles
more than one concurrent source in the field with the objective
of detecting sources at quantized locations. In order to apply
compressed sensing techniques to reconstruct the acoustic
field, we approximate the observation model by quantizing the
spatial dimensions and choose consensus projection weights
for incoherence with the acoustic field.

The process of quantizing the source locations introduces
error into the observation model. In practice, sparse estimators
can often handle these approximations. The focus of this work
is to study the effects of the state quantization error on the
performance of basis pursuit. We propose a variation of basis
pursuit that controls for these errors and characterizes the
conditions for stable field estimation and source detection. In
the related work of [6], the stability of basis pursuit under
model perturbation is shown using restricted isometry. Our
analysis differs by 1) proposing a new sparse estimator; and
2) analyzing stability in terms of mutual coherence, following
[7]. This also differs from the work of [8], which formulates
a nonconvex approach to controlling for model error.

The organization of the remaining sections is as follows.
Section II defines the acoustic field inversion problem and
linear approximation of observations. Section III details the
FICCS approach. Section IV presents the proposed variation
of basis pursuit for controlling spatial quantization error.
Section V presents comparisons of sparse estimators in a
numerical study and section VI concludes the paper.

II. PROBLEM FORMULATION

Our physical model for acoustic source localization consists
of a finite unknown number of .S point-sources and N sensors
in a square two-dimensional (2D) area. Sensors measure the
superposition of propagated wavefield intensities due to the
multiple sources. Our propagation model assumes a simplified
free space inverse power law propagation model, given below.

1
Vo) = T
POy = pally 1
where p,, (1;) is the measured acoustic field at sensor j due to
a unit-magnitude source, 1; and p; are 2D positions of sensor
J and source i, respectively, and v > 1 is a known parameter,
taken to be 2.
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(a) continuously located (b) discretely located

Fig. 1. Example field with three continuously located sources (a) and the
approximation to a discrete lattice (b). Solid black squares are sources, red
circles are sensors, and dashed squares are the regions of each source.

The continuous space of potential source locations is dis-
cretized using a finite VL x /L lattice, and a spacing of
0 between lattice points, yielding a discrete set of potential
source locations p; for [ = 1,2,... L. Quantizing the spatial
dimensions of the field may be equivalently thought of as
sampling with an accumulator, such that each of the L discrete
locations represents the sum of source magnitudes in the
square region given by t € R2, with p;(1) — g <t; <pi(1)+
%, for ¢ = 1,2. The summed magnitudes of sources in each
region are collected into the vector v € R”. We are interested
in estimating this discrete sparse source vector, noting that
multiple sources in the same region will be considered one
source. Figure 1 shows the quantization process in an example
field with 3 sources observed by randomly placed sensors.
Each source is associated with the region of just one of the
lattice points. The right panel shows the discrete locations
used to approximate the measured fields of the continuously
located sources. Modeling sources as a discrete vector v, we
may approximate the noisy vector of all sensor observations
x € RY as a linear mapping.

x=Uv+n¥eRVL:U=[y,1)] ,,neRY (2

J’
The field inversion problem considered becomes the estimation
of an unknown discrete vector that can be described as a
sparse linear combination of parameters, using observations
collected by a network of sensors with a known linear model,
U REY — RV, By construction, the source vector is sparse;
ie., [[vl]o < S, where | - ||o is called the ¢, quasi-norm and
counts the number of nonzero entries. The next section details
the FICCS distributed network estimation algorithm, while
section IV addresses model perturbation error.

III. FIELD INVERSION BY CONSENSUS AND COMPRESSED
SENSING (FICCS)

The FICCS approach for distributed estimation of a sparse
field over a network of sensors uses three phases; 1) Network
Set-up; 2) Sensing and Collaboration; and 3) Field Inversion.

Network Set-up First, localize the N deployed sensors. An
example decentralized method for this is given in [9]. Once
sensors are localized, a discrete 2D lattice is imposed on
the monitored area, with dimension chosen so the spacing ¢
is small enough for the discrete approximation to be stable.
Construct the linear observation matrix, ¥, and the set of links

& describing pairs of communicating nodes, determined by
a uniform sensor communication radius. We require that the
communication graph is connected and bidirectional. Using
the graph structure, each node associates a weight for itself
and each of its neighbors. Collected together in a matrix, the
set of consensus weights has the structure

W eRVN s ;=0 if (i,5) ¢ Eand i #j 3)

chosen such that iterations of weighted combinations of each
sensor’s value with its neighbors converges to the average
of all N sensor values, [10]. Each node is also assigned a
set of m projection weights, chosen to allow for compressed
sensing recovery of sparse source vectors. The collection of all
projection weights forms the matrix & € R™*"; each column
of which is assigned to a different node. A number of methods
for choosing ® exist, e.g., random Gaussian weights or random
orthonormal rows, and using these leads to a required scaling
of m ~ O(Slog(L)), [11]. Performance of ® for compressed
sensing can be measured by the mutual coherence, defined in
[7], [12] for @V = A= [a; a ay|, as

T
1(A) max _lala] ©)
i#i [|aill2 - [lag]|2

Sensing Mode The sensors collect noisy measurements of
a static or concurrently observed field, x, defined in (2).
Using distributed average consensus, they compute an m-
dimensional projection of the global observations x. To do
this, each sensor 7 initializes its m dimensional local state
to s;[0] = (Nx;) ® ¢4, where ¢; is the i*" column of the
projection matrix ¢ and ® is the Kronecker product. Sensors
iteratively exchange messages with the neighboring nodes
using the weights of W to update m states in parallel, as

S; [k’ + 1] = W;;iS; [k’] + Z Wi, jSj [k‘} (5)
j:(i,)€E
Because limy,_,o, Wk = %, the recursion of (5) converges

to ®x, [3]. For k large enough, all nodes have approximately
the same projection y = ®x. In practice, sensors will stop at a
fixed number agreed upon during set-up. We denote the exact
projection matrix of node i as ®gr(;), which is known to each
node. This yields the observation equation at each node,

Vi = PeryX = Pepsy) (Vv +n) = Agyv+z  (6)

Asynchronous gossip methods can also be used, as in [13],
[2]. In grid or random geometric communication graphs, the
lowest possible growth in the number of messages required
for convergence is at least linear in the number of nodes,
[13], [14]. We now bound the scaling of messages for FICCS,
since the number of projections grows as Slog(L), and we
choose N ~ L, the overall growth of messages with sensors
is O (SN log(N)).

Field Inversion Local sensors may reconstruct estimates
of the global field using the observations given by (6). We
bound the norm of the additive Gaussian noise z by € such
that P (||z|l2 <€) = 0.99. We focus on two methods for
compressed sensing recovery, studied in [7] and [12]. The first
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is called noise-aware basis pursuit (BP), [7], which minimizes
the /;1-norm, a convex sparsity metric, of the source vector
subject to the noise norm bound.
minimize
subject to

vl

(1) ly — Av]lz < €

)
The second is a penalized least-squares estimator (L1P),
studied in [12] among others, with a tradeoff parameter \.

¢y penalty: minimize

IVl +3lly —Av[E ()

These estimators are convex programs with efficient open
source solvers. For the next section, we propose two sparse
estimators designed to take quantization error into account.

IV. MODEL ROBUST BAsIS PURSUIT (MRBP)

The observation models, (2) and (6), are a linear approx-
imation of the sensor measurements. The true model can be
represented by a perturbed system,

y=0Uv+z=0(Vy+ FE)v+z 9)

where the matrix ¥ € R”*N represents the actual observation
system with each column corresponding to the sampled prop-
agated field due to the true source location, whereas Wy is our
assumed model using quantized source locations, and F is the
matrix of perturbations to the assumed model. Accounting for
model error, the basis pursuit method for reconstructing sparse
solutions gives an altered fit constraint.

minimize
subject to

vl
|y — @Tgv — BEV|y < ¢

We do not know a priori the particular F that will be
observed, and jointly minimizing over both F and v is a
nonconvex problem, as treated in [8]. Instead, we bound the
multiplicative error vector, noting that v is sparse. Columns of
the perturbation matrix, £ = [e; ey, are composed
of differences between sensor measurements of a source at
the lattice point as compared with the source shifted in each
of the spatial dimensions by up to 4/2. The error term ®Ev
can be decomposed as a sum over support indices 7’; as in
Ev = ZieT de;v;. The difference vectors Pe; € RV are
drawn from the set of allowed column perturbations, which
we denote A\;, defined as

_ . €j = Yp, (1)—1/) 7(1)7

where 1;, p;, and p; + t are the 2D positions of sensor j,
lattice point 7, and the actual source location, respectively.
These model perturbations depend both on the propagation
model as well as the projection matrix &.

Let g; = maxeen, |[Pel|2 be an upper bound on the norm
of any vector from A;, and g = [g;]Y,. These maxima are
achieved at the extrema of the source regions, and so may
be efficiently computed during network set-up. From these
column-norm upperbounds, we can now bound the overall fit
error, f = ®Ev + z, by

(If]]2 < Z'Ui|gi+€

€T

(Pre) (10)

12)

Noise-aware Basis Pursuit (BP) Model Robust Basis Pursuit (MRBP)

mininmize [V, A0 | mininmize M,

subject to [Av-y|, <& v20 subject to |Av—y|, <e+F7v, v20
A0

L1 Penalized Least Squares (L1P) Penalized Model Robust Basis Pursuit (PMRBP)

mininmize |V, +§ HAv—yHi &8 mininmize M, +%HAv—y‘ z

subject to v>0 subjectto [Av—y|, <e+fg’v, v20

Fig. 2. Relationship of the compared sparse recovery methods

to expand the fit constraint of (10). We propose the following
model-robust formulation of basis pursuit (MRBP),

minimize [[v]1
(Pes) subject to ly — 2o (v — vo)ll2 < e+ ¥,eq feilge 19
with a version for nonnegative source magnitudes,

17v
ly — Aovllz <e+g'v, v>0

minimize

+
(Pree) subject to

(14)
We recognize (Pj.g) and (Plféyg) as second order cone
programs, where the cone constraint has also a linear term.

Theorem 1 For a true vector, v satisfying ||v|jo < S and
max; |v;| < Umax; and system y = @ (Vg + E)vg + z, with
coherence ;(PW) given by (4), E satisfying max; || Pe; |2 <
Jmax, and ||z||2 < ¢, then for S < % i + 1), the estimation
errors of (13) and (14), are upperbounded by

2 (E +S- gmaxUmax)
1—p(4S-1)

[V —vol2 < (15)
The proof, which follows from a modification of the stability
analysis of BP given by Donoho, Elad, Temlyakov in [7], is
in an extended companion to this paper [15]. The enlarged
cone constraint of (14) can significantly reduce the estimation
performance of MRBP, so we also add an /5 fit penalty to the
objective function, calling this penalized model-robust basis
pursuit (PMRBP). Figure 2 shows the comparison of sparse
estimators, with parameter 3 € [0, 1] relating the four methods.

V. NUMERICAL EXPERIMENTS

To test and compare the four estimators of fig. 2, we
simulate a network of 150 sensors placed randomly, ensuring
a minimum intersensor distance of 1/3, to observe the square
area covered by a 10-by-10 lattice of discrete source positions
with regular spacing of § = 2. We also compare the same
deployment with a 30-by-30 lattice, upsampled by 3, spaced
by § = 2/3. Each of 50 trials place 3 sources of magnitude
15 uniformly at random in the area. Measurement noise is
modeled as independent, Gaussian with variance 0.001. Pro-
jection weights for ® of (6), are chosen as rows of a random
orthonormal matrix. The system coherence and maximum
perturbation constants are shown as a function of the number
of network projections m in fig. 3.

We study the /5 estimation error and detection performance
of estimates computed using the cvx software package, [16].
When computing error and detections for estimates on the
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Fig. 3. FICCS experiments. (a) shows coherence (. and maximum perturba-
tion constant gmax versus number of projections m and two lattice sampling
rates, w = 1, 3 corresponding to 6 = 2,2/3. (b) the number of feasible trials
for each estimator versus m. (c) shows average {2 estimation error versus \
(on the left) and versus (3 (on the right) for fixed m = 30.

upsampled lattice, we quantize the upsampled v € R to
a coarse v € R'% to make the error metrics comparable.
We study average (o error versus the number of network
projections m and parameters A and 3. The number of feasible
trials is shown for A = 1 and small 3 in fig. 3 panel (b),
showing that there are significant problems with infeasibility
using BP, whereas MRBP is feasible for 5 > 0.5. The left
side of panel (c) shows the average error of estimates, for a
fixed m and 8 = 1, as a function of the fit tradeoff parameter
A. In the coarse lattice, denoted by v = 1, the ¢; penalty
(L1P) estimator performed the best over a range of A, while
BP had no feasible trials. In the fine lattice, for small A,
PMRBP performs a little better than L1P. For moderate A,
both outperform the BP estimates. The errors of MRBP are
consistently high motivating the use of penalized estimators.
Additionally, as 3 increases MRBP error grows, while L1P
and PMRBP programs maintain consistently low error. Each
of these studies supports the use of the fine lattice, which has
much lower constants g, but higher coherence .

Figure 4 shows that detection rates increased with m for
all estimators except BP, which performed poorly due to
increasing model error with m. This inconsistent behavior is
not displayed by the robust estimators, MRBP and PRMBP.
The low value of A = 0.1 led to poor detection rates using
LIP compared with PRMBP, indicating better robustness of
PMRBP to the choice of A. For moderate values of A and
m > 30, the estimates of PRMBP and L1P performed well
and matched each other, achieving almost 100% detection rates
with the average number of false alarms below 1.5.

VI. CONCLUSIONS

We described a distributed algorithm to invert a sparse field
of acoustic sources discretized to a finite lattice. The algorithm

Avg. Num. Detections Avg. Num. False Alarms

Py 2 3.5

—+—BP

3 ~5-MRBP

-E-L1P 2=0.1

-&~PMRBP 1=0.1

“A-L1P A=5.0
PMRBP 1=5.0

m m

Fig. 4. Average number of sources detected (left), out of 3, and false alarms
(right) with threshold 1, 3 = 1, for the sparse estimators, using quantized
estimates from the u = 3 lattice vs. m. Penalty methods compare A = 0.1, 5.

combines ideas from compressed sensing and consensus to
achieve scalable decentralized network estimation. We propose
a method for controlling for the induced modeling errors,
called model-robust basis pursuit and derived stability con-
ditions for the estimates. We found that the robust estimators
addressed feasibility and consistency issues of basis pursuit,
and noted the need for an ¢y penalty in the objective of MRBP
to overcome the expansion of the cone constraint.
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