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ABSTRACT

In this paper, we revisit the distributed total least squares (D-TLS)
algorithm, which operates in an ad hoc sensor network where each
node has access to a subset of the equations of an overdetermined
set of linear equations. The D-TLS algorithm computes the total
least squares (TLS) solution of the full set of equations in a fully
distributed fashion (without fusion center). We modify the D-TLS
algorithm to eliminate the large computational complexity due to
an eigenvalue decomposition (EVD) at every node and in each it-
eration. In the modified algorithm, a single power iteration (PI) is
performed instead of a full EVD computation, which significantly
reduces the computational complexity. Since the nodes then do not
exchange their true eigenvectors, the theoretical convergence results
of the original D-TLS algorithm do not hold anymore. Nevertheless,
we find that this PI-based D-TLS algorithm still converges to the
network-wide TLS solution, under certain assumptions, which are
often satisfied in practice. We provide simulation results to demon-
strate the convergence of the algorithm, even when some of these
assumptions are not satisfied.

Index Terms— Distributed estimation, wireless sensor net-
works (WSNs), total least squares

1. INTRODUCTION

Consider the linear regression problem Uw = d in the unknown P -
dimensional regressor w, with U an M×P regression matrix and d
an M -dimensional data vector with M ≥ P . The problem of solv-
ing such an overdetermined set of equations is often encountered in
sensor network applications, where nodes can either have access to
subsets of the columns of U, e.g. for distributed signal enhancement
and beamforming [1], or to subsets of the equations, i.e., subsets of
the rows of U and d, e.g. for distributed system identification [2–4].

In this paper, we consider total least squares (TLS) estimation,
which is a popular solution method when both the regression matrix
U and the data vector d are corrupted by additive noise [5]. The TLS
solution can be found by computing the eigenvector corresponding
to the smallest eigenvalue of the squared extended data matrix R =
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[U | d]H [U | d]. In [6], the TLS problem is defined in a wireless
sensor network, where the rows of U and their corresponding entries
in d are distributed over the nodes. The distributed TLS (D-TLS)
algorithm computes the network-wide TLS solution in a distributed
fashion, i.e., without gathering all the data in a fusion center [6].
In this iterative algorithm, each node solves a local TLS problem in
each iteration, and shares its result with its neighbors to update the
local TLS matrix at each node.

The D-TLS algorithm has a large computational complexity due
to the fact that a local TLS problem needs to be solved in each node
and in each iteration of the algorithm, which requires a (partial)
eigenvalue decomposition (EVD). This may be too computation-
ally expensive if the unknown regressor w has a large dimension.
In this paper, we relax the task for each node to solve a full local
TLS problem in each iteration. Instead, each node performs a single
(inverse) power iteration (PI), and then shares the resulting vector
with its neighbors. This signficantly decreases the computational
cost in each node. We refer to the new algorithm as the PI-based
D-TLS algorithm. Since the local TLS problems are only approx-
imately solved in each iteration of the PI-based D-TLS algorithm,
the theoretical convergence results from [6] are not valid anymore.
Nevertheless, we find that, under certain conditions, which are often
satisfied in practice, the PI-based D-TLS algorithm does converge to
the network-wide D-TLS solution at each node1. We demonstrate
by means of simulations that convergence is still obtained, even if
some of the conditions are not met (e.g. when using a fixed step size
instead of a decreasing step size).

2. DISTRIBUTED TOTAL LEAST SQUARES (D-TLS)

In this section, we briefly review the distributed TLS problem state-
ment and the D-TLS algorithm. For further details, we refer to [6].

Consider an ad hoc WSN with the set of nodes J = {1, . . . , J}
and with a random (connected) topology, where nodes can exchange
data with their respective neighbors through a wireless link. We de-
note the set of neighbor nodes of node k as Nk, i.e., all the nodes
that can share data with node k, node k excluded. |Nk| denotes car-
dinality of the setNk, i.e., the number of neighbors of node k. Node
k collects a noisy Mk ×P data matrix Uk = Uk +Nk and a noisy
Mk-dimensional data vector dk = dk +nk, for which the clean ver-
sions Uk and dk are assumed to be related through a linear regressor
w, i.e., Ukw = dk. The goal is then to solve a TLS problem for the
network-wide system of equations in which all Uk’s and dk’s are

1The convergence proof is omitted in this paper due to space constraints

(the proof can be found in [7]).
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Table 1. The distributed total least squares (D-TLS) algorithm.

1. ∀ k ∈ J : Initialize R
(0)
k = Rk.

2. i← 0

3. Each node k ∈ J computes the eigenvector x
(i)
k correspond-

ing to the smallest eigenvalue of R
(i)
k , where x

(i)
k is scaled

such that ‖x(i)
k ‖ = 1.

4. Each node k ∈ J transmits x
(i)
k to the nodes inNk.

5. Each node k ∈ J updates (with stepsize μi > 0)

R
(i+1)
k ← R

(i)
k +μi

(
|Nk|x(i)

k x
(i) H
k −

∑
q∈Nk

x(i)
q x(i) H

q

)
.

6. i← i + 1.

7. return to step 3.

stacked. This means we need to solve the optimization problem

min
w,�U1,...,�UJ ,�d1,...,�dJ

∑
k∈J

(
‖�Uk‖2F + ‖�dk‖2

)
(1)

s.t. (Uk +�Uk)w = (dk +�dk) , k = 1, . . . , J (2)

where ‖.‖F and ‖.‖ denote the Frobenius norm and the 2-norm, re-
spectively. In [8], it is shown that the TLS estimate is unbiased when
the noises Nk and nk contaminating Uk and dk are zero mean and
white (this is not the case for the least squares (LS) estimate, which
is always biased when the regressor matrix Uk is noisy [3]).

The problem (1)-(2) is referred to as the distributed total least
squares (D-TLS) problem, since each node only has access to a part
of the data. Its solution is denoted as w∗. The goal is to compute w∗

in a distributed fashion, without gathering all data in a fusion center.
In the sequel, eN is as an N -dimensional vector with all zeros

except for the last entry which is equal to 1, oN is the N -dimensional
all-zero vector, IN denotes the N × N identity matrix, and ON×Q

is the N ×Q all-zero matrix. Let N = P +1 and define the N ×N
matrix Rk = UH

k+Uk+, with Uk+ = [Uk | dk] and superscript H
denoting the conjugate transpose operator. Then the solution of the
D-TLS problem is given by [5]:

w∗ = − 1

eT
Nx∗

[
IP oP

]
x∗

(3)

where x∗ is the eigenvector corresponding to the smallest eigenvalue
of R =

∑
k∈J Rk. This eigenvector can be computed in an itera-

tive distributed fashion by means of the D-TLS algorithm2 [6], which

is given in Table 1. In [6], it has been shown that, ∀ k ∈ J , the x
(i)
k

in the D-TLS algorithm converges to the eigenvector corresponding
to the smallest eigenvalue of R =

∑
k∈J Rk under the step size

conditions ∞∑
i=0

μi =∞,

∞∑
i=0

(μi)
2 <∞ . (4)

2In this paper, we use the more efficient implementation of the D-TLS

algorithm (see [6], Section IV-B, Remark I), which has a reduced overhead

and memory usage, at the cost of less robustness against node failures. How-

ever, all results in this paper also hold for the original implementation of the

D-TLS algorithm as derived in [6].

In each node, the TLS solution of (1)-(2) can then be extracted from
this eigenvector (based on (3)).

3. D-TLS WITH POWER ITERATIONS

The computation of the eigenvector corresponding to the smallest

eigenvalue of R
(i)
k is an O(N3) procedure, and therefore the most

expensive step of the D-TLS algorithm. In this section, we will mod-
ify the D-TLS algorithm such that this step is replaced with a single
N ×N matrix-vector multiplication.

Let R
(i)
k = B

(i)
k Λ

(i)
k B

(i) H
k denote the eigenvalue decomposi-

tion of R
(i)
k where Λ

(i)
k = diag{λ(i)

k,1, . . . , λ
(i)
k,N} such that λ

(i)
k,1 ≥

λ
(i)
k,2 ≥ . . . ≥ λ

(i)
k,N , B

(i)
k is a unitary matrix, and b

(i)
k,j is its j-th

column. Let P
(i)
k =

(
R

(i)
k

)−1

(assuming λ
(i)
k,N > 0), and assume

that λ
(i)
k,N 	= λ

(i)
k,N−1. The eigenvector b

(i)
k,N , corresponding to the

smallest eigenvalue λ
(i)
k,N can then be computed by iterating

x← P
(i)
k x

‖P(i)
k x‖

(5)

starting with a random unity-norm vector that satisfies xHb
(i)
k,N 	= 0.

This is referred to as the (inverse) power iteration (PI) method. We
could then replace step 3 in the D-TLS algorithm with the above
PI procedure. Assuming that the stepsize μi is not too large, the

eigenvectors b
(i−1)
k,N and b

(i)
k,N of R

(i−1)
k and R

(i)
k will be close to

each other, and hence only a small number of PI’s are required if the

procedure is initialized with the computed eigenvector x
(i−1)
k from

the previous iteration. In the modified algorithm, we will therefore
only perform a single PI in each D-TLS iteration.

It is noted that the above procedure requires the inversion of

R
(i)
k to obtain P

(i)
k , which is an O(N3) procedure. A recursive

update of P
(i−1)
k to obtain P

(i)
k significantly reduces the computa-

tional complexity, assuming that N 
 |Nk|. Indeed, step 5 of the

algorithm shows that R
(i+1)
k consists of |Nk|+1 rank-1 updates ap-

plied to R
(i)
k . The corresponding inverse matrix update can then be

computed efficiently with the Woodbury matrix identity [9, Section
2.1.3]:

(
A± xxH

)−1
= A−1 ∓

(
A−1x

) (
xHA−1

)
1± xHA−1x

. (6)

Assuming P
(i−1)
k is known, we can compute P

(i)
k by applying this

rank-1 update |Nk| + 1 times, which is an O(|Nk|N2) procedure.

We define R1± as the operator that computes
(
A± xxH

)−1
based

on (6), such that R1± (A−1,x
)

=
(
A± xxH

)−1
.

This in effect yields the PI-based D-TLS algorithm, as described
in Table 2. The overall complexity at node k is O(|Nk|N2).

4. CONVERGENCE PROPERTIES OF THE PI-BASED
D-TLS ALGORITHM

The following theorem guarantees the convergence and optimality
of the PI-based D-TLS algorithm under the assumptions

Assumption 1:
∑∞

i=0
μi =∞

Assumption 2:
∑∞

i=0
(μi)

2 <∞
Assumption 3: ∃ κ1 > 0, ∃ L1 ∈ N, ∀ k ∈ J :
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Table 2. The power-iteration based D-TLS algorithm.

1. ∀ k ∈ J : Initialize P
(1)
k = (Rk)−1

and choose a random

N -dimensional vector x
(0)
k with unity-norm.

2. i← 1

3. Each node k ∈ J computes

x
(i)
k =

P
(i)
k x

(i−1)
k

‖P(i)
k x

(i−1)
k ‖

.

4. Each node k ∈ J transmits x
(i)
k to the nodes inNk.

5. Each node k ∈ J computes P
(i+1)
k as follows (for stepsize

μi > 0)

• A← P
(i)
k

• ∀ q ∈ Nk : A← R1−
(
A,
√

μix
(i)
q

)
• P

(i+1)
k = R1+

(
A,
√

μi|Nk|x(i)
k

)
.

6. i← i + 1.

7. return to step 3.

i > L1 ⇒ λ
(i)
k,N−1 − λ

(i)
k,N > κ1

Assumption 4: ∃ ξ1 > 0, ∀ i ∈ N, ∀ k ∈ J : λ
(i)
k,N > ξ1

Theorem 4.1. Let Assumptions 1 to 4 be satisfied. Then the follow-
ing holds for the PI-based D-TLS algorithm:

∀ k ∈ J : lim
i→∞

x
(i)
k = x∗

(7)

where x∗ is the eigenvector corresponding to the smallest eigenvalue
of R =

∑
k∈J Rk.

The proof of this theorem is elaborate and is omitted due to space
constraints (the proof can be found in [7]). In the remaining of this
section, we will discuss the assumptions that were made, and how
they impact the implementation and behavior of the PI-based D-TLS
algorithm in practice.

4.1. Assumptions 1 and 2

Assumptions 1 and 2 are often imposed to prove convergence in
(sub)gradient or relaxation methods (see e.g. [6, 10]), and were al-
ready assumed in expression (4) to guarantee convergence of the
original D-TLS algorithm. As with the original D-TLS algorithm,
Assumption 2 may yield slow convergence in the PI-based D-TLS
algorithm, and it is not a practical assumption in tracking applica-
tions. However, the fact that convergence can be proven under these
conditions is good news since it means that in priniciple an infinite
accuracy can be obtained. Furthermore, this usually indicates that
the algorithm will at least converge to a neighborhood of the exact
solution when using a fixed step size that is sufficiently small. This
neighborhood then shrinks with the chosen step size. Simulations
will demonstrate that this is indeed true for the PI-based D-TLS al-
gorithm.

4.2. Assumption 3

Assumption 3 guarantees that, if sufficient iterations have passed,

the smallest and one but smallest eigenvalue of the matrix R
(i)
k are

well-separated in each node, i.e., the smallest eigenvalue does not
degenerate. This is a reasonable assumption if the step sizes μi are
small compared to the separation of the two smallest eigenvalues in

the initial matrices R
(0)
k , i.e., if the initial local TLS problems are not

too ill-conditioned. If the step size is sufficiently small, the eigen-
vector corresponding to the smallest eigenvalue will then follow a
smooth trajectory in the direction of the true solution, rather than
making abrupt jumps due to eigenvalue swaps.

Note that, even if the smallest eigenvalue degenerates at a certain
node at some iteration, this is not a problem as such, as long as the
eigenvalue later iterates away from this degeneration, which is usu-
ally the case. Only if the smallest eigenvalue degenerates in (or near)

the equilibrium point R
(∞)
k , a problem may occur to reach consen-

sus amongst the nodes. It is noted that the original D-TLS algorithm
also breaks down in this case, since step 3 of the algorithm is then
ill-defined which results in random behavior. In fact, the PI-based
D-TLS algorithm generally behaves better than the D-TLS algorithm
in such situations. Indeed, since the eigenvector computation is re-
placed with a single PI, the estimate will not change very abruptly,

even when the eigenvalues λ
(i)
k,N and λ

(i)
k,N−1 get ‘swapped’.

Since this issue may hinder the consensus, convergence cannot
be proven in such situations (for both algorithms). This can only be
resolved by choosing a smaller μi or by adding extra functionality to
the algorithm to ensure that each node selects the same eigenvector.
We will not further elaborate on this, since it rarely occurs and it is
beyond the scope of this paper.

4.3. Assumption 4

Assumption 4 assures that the smallest eigenvalue remains strictly

positive. This avoids rank deficiency of R
(i)
k , and it avoids that the

(inverse) power iteration method converges to an eigenvector other

than b
(i)
k,N in case the corresponding eigenvalue λk,N < 0 and ∃j <

N : |λk,j | < |λk,N |. Assumption 4 is a reasonable assumption if
small step sizes μi are used and if the initial smallest eigenvalues

λ
(0)
k,N ’s are not too close to zero. If the smallest eigenvalue would still

become negative, one can add an identity matrix to R
(i)
k (and make

the corresponding changes in P
(i)
k =

(
R

(i)
k

)−1

). This does not

affect the solution of the D-TLS problem, since the sum
∑

k∈J R
(i)
k

is then equal to νIN +
∑

k∈J Rk = νIN + R (for some ν), which
has the same eigenvectors and the same ranking of eigenvalues as
the original matrix R.

5. SIMULATION RESULTS

In this section, we provide numerical simulation results that demon-
strate the convergence properties of the PI-based D-TLS algorithm.
To illustrate the general behavior, we show results that are averaged
over multiple Monte-Carlo (MC) runs. The scenario is different in
each MC run, and is generated according to the same procedure as
described in the simulation section in [6] (which is omitted here due
to space constraints).

In each experiment, we choose J = 20, N = P + 1 = 10. To
assess the convergence and optimality of the algorithm, we use the
error between the true solution and the local estimate, averaged over
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Fig. 1. Convergence properties of the D-TLS and PI-based D-TLS

algorithm for different step sizes, averaged over 1000 Monte-Carlo

runs.

the J nodes in the network:

1

|J |
∑
k∈J

‖x(i)
k ± x∗‖2 (8)

where x∗ is the normalized eigenvector corresponding to the small-
est eigenvalue of R =

∑
k∈J Rk. The ‘±’ is used to resolve the

sign ambiguity (we choose the one that yields the smallest error).

Fig 1 shows the convergence properties over 400 iterations of
the PI-based D-TLS algorithm for different choices of the step size
μi, averaged over 1000 MC runs. We used a fixed step size rang-
ing from 0.02 to 0.3, which results in a converging algorithm even
though Assumptions 1 and 2 are not satisfied. Larger step sizes of-
ten caused the algorithm not to converge. The figure also shows the
results of a variable step size strategy where μi = 0.3 1

i0.7 , which
satisfies Assumptions 1 and 2. It is observed that this results in an
impractically slow convergence.

It is observed that the convergence speed strongly depends on
the choice of the step size. The proper choice of the step size is cru-
cial to obtain a sufficiently fast convergence and sufficient accuracy
(as it is also the case in the original D-TLS algorithm). Small step
sizes yield slow convergence, but too large step sizes may yield un-
stable behavior. It is still an open question how the optimal step size
strategy can be determined on-line.

The convergence of the original D-TLS algorithm is also shown
in Fig. 1 as a reference (with fixed step size μ = 1, which was
empirically found to give the best convergence properties for this
scenario [6]). It is observed that the original D-TLS algorithm con-
verges faster than the PI-based D-TLS algorithm, especially when
the algorithm gets close to the optimal solution. This demonstrates
that the original D-TLS algorithm has better tracking capabilities
than the PI-based algorithm. However, the true strength of the PI-
based D-TLS algorithm is its low computational complexity, espe-
cially so for the estimation of large regressors.

Fig. 2 shows the results of 500 MC runs for different N =
P + 1, i.e., for increasing dimension of the D-TLS problem. It can
be observed that the PI-based D-TLS algorithm still converges to the
correct solution if the dimension of the TLS problem is large. We
did not show the results for the original D-TLS algorithm since the
processing time for N ≥ 100 is too long.
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Fig. 2. Convergence properties of the PI-based D-TLS algorithm for

different values of N , averaged over 500 Monte-Carlo runs.

6. CONCLUSIONS

In this paper, we have modified the D-TLS algorithm to reduce its
computational complexity, by replacing its EVD’s with single (in-
verse) PI’s. The PI-based D-TLS algorithm still converges to the
network-wide TLS solution under certain assumptions which are of-
ten satisfied in practice. We have provided simulation results to
demonstrate the convergence of the algorithm, even when some of
these assumptions are not satisfied (e.g. when a fixed step size is
used instead of a decreasing step size).
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